Chen, Tongyun et al. published their research in Huaxue Wuli Xuebao in 2002 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Preparation of SO42-/ZrO2-Al2O3 solid superacid by improving preparation condition and adding lanthanum was written by Chen, Tongyun;Gu, Xupeng;Wan, Yubao. And the article was included in Huaxue Wuli Xuebao in 2002.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

Various superacid SO42-/ZrO2-Al2O3 catalysts were prepared by a coprecipitation, and modified by aging at low temperature and addition of the rare earth oxide, such as La2O3. A optimum at. ratio of Zr/Al was found to be 0.5, which was confirmed by the catalytic activity of samples for n-butane isomerization. IR measurements demonstrated that the intensity of the peak at 1393 cm-1 for the samples aged at low temperature and containing the rare earth oxide was more higher than that for the samples at room temperature For the sample containing the RE oxide and aged at low temperature, XRD observed a metastable tetragonal phase of ZrO2 crystal which is responsible for the higher catalysis activity as we believe. The observation of catalytic activity for esterification of sucrose further evidenced the conclusion mentioned above. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Qian, Dan et al. published their research in Fitoterapia in 2020 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Product Details of 126-14-7

Dicaffeoyl polyamine derivatives from bitter goji: Contribution to the bitter taste of fruit was written by Qian, Dan;Chen, Jinlong;Lai, Changjiangsheng;Kang, Liping;Xiao, Sa;Song, Jianfang;Xie, Junbo;Huang, Luqi. And the article was included in Fitoterapia in 2020.Product Details of 126-14-7 This article mentions the following:

Although the bioactive compounds in goji have been thoroughly identified and quantified, little information is available on the bitter compounds in the berries, and no systematic works on the substances responsible for their bitterness have been performed. Herein, the substances contributing to the bitterness of berries were isolated and purified from bitter-tasting goji by the combined use of column chromatog. and high-pressure liquid chromatog. (HPLC). The bitterness of the isolated compounds was evaluated using a biosensor with immobilized rat taste-bud tissues. The structures were elucidated via comprehensive mass spectrometry (MS) and NMR (NMR) analyses. Seven spermine or spermidine alkaloids were identified, including four new compounds (lyciamarspermidines A and B and lyciamarspermines A and B). The intensities of the bitterness levels of the isolated compounds differed with the number of glucose substituents. These isolated compounds all contribute to the bitterness of goji. The results of this study provide opportunities for the further investigation of the bitterness of goji. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Product Details of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Product Details of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Rotroff, Daniel M. et al. published their research in Environmental Science & Technology in 2014 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Category: tetrahydrofurans

Predictive Endocrine Testing in the 21st Century Using in Vitro Assays of Estrogen Receptor Signaling Responses was written by Rotroff, Daniel M.;Martin, Matt T.;Dix, David J.;Filer, Dayne L.;Houck, Keith A.;Knudsen, Thomas B.;Sipes, Nisha S.;Reif, David M.;Xia, Menghang;Huang, Ruili;Judson, Richard S.. And the article was included in Environmental Science & Technology in 2014.Category: tetrahydrofurans This article mentions the following:

Thousands of environmental chems. are subject to regulatory review for their potential to be endocrine disruptors (ED). In vitro high-throughput screening (HTS) assays have emerged as a potential tool for prioritizing chems. for ED-related whole-animal tests. In this study, 1814 chems. including pesticide active and inert ingredients, industrial chems., food additives, and pharmaceuticals were evaluated in a panel of 13 in vitro HTS assays. The panel of in vitro assays interrogated multiple end points related to estrogen receptor (ER) signaling, namely binding, agonist, antagonist, and cell growth responses. The results from the in vitro assays were used to create an ER Interaction Score. For 36 reference chems., an ER Interaction Score >0 showed 100% sensitivity and 87.5% specificity for classifying potential ER activity. The magnitude of the ER Interaction Score was significantly related to the potency classification of the reference chems. ERα/ERβ selectivity was also evaluated, but relatively few chems. showed significant selectivity for a specific isoform. When applied to a broader set of chems. with in vivo uterotrophic data, the ER Interaction Scores showed 91% sensitivity and 65% specificity. Overall, this study provides a novel method for combining in vitro concentration response data from multiple assays and, when applied to a large set of ER data, accurately predicted estrogenic responses and demonstrated its utility for chem. prioritization. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Category: tetrahydrofurans).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Cubero-Castillo, Elba et al. published their research in Chemical Senses in 2001 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.SDS of cas: 126-14-7

Effect of compound sequence on bitterness enhancement was written by Cubero-Castillo, Elba;Noble, A. C.. And the article was included in Chemical Senses in 2001.SDS of cas: 126-14-7 This article mentions the following:

The nature and occurrence of carry-over effects, i.e. the response to a stimulus is influenced by previous samples, were examined for selected bitter compounds A time-intensity procedure was used to rate the bitterness of six compounds (caffeine, denatonium benzoate, limonin, naringin, quinine and sucrose octa-acetate). For each subject concentrations of these compounds were determined that were approx. equal in intensity to 1.18 × 10-5 M limonin. To test carry-over effects of each compound the 36 paired sequences (pairs) were evaluated. Within a session three pairs were tested, between which two-stage rinses were used to remove any effects of the previous pairs. Within a pair only water rinses were used between stimuli. For all compounds carry-over or sensitization effects were observed in which values for maximum intensity, rate of onset and total area under the time-intensity curve were higher for a compound when tested in the second position than in the first. In addition, the degree of sensitization and susceptibility to sensitization were compound-specific. Caffeine increased the bitterness by the largest amount for all other compounds, while it was least affected. Regardless of the compound in the first position, the bitterness of quinine and denatonium were most enhanced. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7SDS of cas: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.SDS of cas: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ma, Shao-Ling et al. published their research in Journal of Physical Chemistry B in 2010 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Electric Literature of C28H38O19

Sugar Acetates as CO2-philes: Molecular Interactions and Structure Aspects from Absorption Measurement Using Quartz Crystal Microbalance was written by Ma, Shao-Ling;Wu, You-Ting;Hurrey, Michael L.;Wallen, Scott L.;Grant, Christine S.. And the article was included in Journal of Physical Chemistry B in 2010.Electric Literature of C28H38O19 This article mentions the following:

Sugar acetates, recognized as attractive CO2-philic compounds, have potential uses as pharmaceutical excipients, controlled release agents, and surfactants for microemulsion systems in CO2-based processes. This study focuses on the quant. examination of absorption of high pressure CO2 into these sugar derivatives using quartz crystal microbalance (QCM) as a detector. In addition to the absorption measurement, the QCM is initially found to be able to detect the CO2-induced deliquescence of sugar acetates, and the CO2 pressure at which the deliquescence happens depends on several influencing factors such as the temperature and thickness of the film. The CO2 absorption in α-D-glucose pentaacetate (Ac-α-GLU) is revealed to be of an order of magnitude larger in comparison with its anomer Ac-β-GLU, whereas α-D-galactose pentaacetate (Ac-α-GAL) absorbs CO2 less than Ac-α-GLU due to the steric-hindrance between the acetyl groups on the anomeric and C4 carbons, implying the significant importance of the mol. structure and configuration of sugar acetates on the absorption. The effects of mol. size and acetyl number of sugar acetates on the CO2 absorption are evaluated and the conformation and packing of crystalline sugar acetate as well as the accessibility of the acetyls are also vital for the absorption of CO2. It is addnl. found that a CO2-induced change in the structure from a crystalline system to an amorphous system results in an order of magnitude increase in CO2 absorption. Further study illustrates the interaction strength between sugar acetates and CO2 by calculating the thermodn. parameters such as Henry’s law constant, enthalpy and entropy of dissolution from the determined CO2 absorption. Experiments and calculations demonstrate that sugar acetates exhibit high CO2 absorption, as at least comparable to ionic liquids Since the ionic liquids have potential uses in the separation of acidic gases, it is evident from this study that sugar acetates could be used as possible materials for CO2 separation In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Electric Literature of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Electric Literature of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Sato, Hideo et al. published their research in Journal of Magnetic Resonance in 2008 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Electric Literature of C28H38O19

Electron spin-lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids was written by Sato, Hideo;Bottle, Steven E.;Blinco, James P.;Micallef, Aaron S.;Eaton, Gareth R.;Eaton, Sandra S.. And the article was included in Journal of Magnetic Resonance in 2008.Electric Literature of C28H38O19 This article mentions the following:

Electron spin-lattice relaxation rates, 1/T1, at X-band of nitroxyl radicals (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-1-oxyl, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-oxyl and 3-carbamoyl-2,2,5,5-tetramethylpyrrolin-1-oxyl) in glass-forming solvents (decalin, glycerol, 3-methylpentane, o-terphenyl, 1-propanol, sorbitol, sucrose octaacetate, and 1:1 water:glycerol) at temperatures between 100 and 300 K were measured by long-pulse saturation recovery to investigate the relaxation processes in slow-to-fast tumbling regimes. A subset of samples was also studied at lower temperatures or at Q-band. Tumbling correlation times were calculated from continuous wave lineshapes. Temperature dependence and isotope substitution (2H and 15N) were used to distinguish the contributions of various processes. Below about 100 K relaxation is dominated by the Raman process. At higher temperatures, but below the glass transition temperature, a local mode process makes significant contributions. Above the glass transition temperature, increased rates of mol. tumbling modulate nuclear hyperfine and g anisotropy. The contribution from spin rotation is very small. Relaxation rates at X-band and Q-band are similar. The dependence of 1/T1 on tumbling correlation times fits better with the Cole-Davidson spectral d. function than with the Bloembergen-Purcell-Pound model. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Electric Literature of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Electric Literature of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Inoue, Masashi et al. published their research in Physiological Genomics [online computer file] in 2001 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Recommanded Product: (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Soa genotype selectively affects mouse gustatory neural responses to sucrose octaacetate was written by Inoue, Masashi;Li, Xia;McCaughey, Stuart A.;Beauchamp, Gary K.;Bachmanov, Alexander A.. And the article was included in Physiological Genomics [online computer file] in 2001.Recommanded Product: (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

In mice, behavioral acceptance of the bitter compound sucrose octaacetate (SOA) depends on allelic variation of a single gene, Soa. The SW.B6-Saob cogenic mouse strain has the genetic background of an “SOA taster” SWR/J strain and an Soa-containing donor chromosome fragment from an “SOA nontaster” C57BL/6J strain. Using microsatellite markers polymorphic between the two parental strains, we determined that the donor fragment spans 5-10 cM of distal chromosome 6. The SWR/J mice avoided SOA in two-bottle tests with water and had strong responses to SOA in two gustatory nerves, the chorda tympani (CT) and glossopharyngeal (GL). In contrast, the SW.B6-Soab mice were indifferent to SOA in two-bottle tests and had very weak responses to SOA in both of these nerves. The SWR/J and SW.B6-Soab mice did not differ in responses of either nerve to sucrose, NaCl, HCl, or the bitter-tasting stimuli quinine, denatonium, strychnine, 6-n-propylthiouracil, phenylthiocarbamide, and MgSO4. Thus the effect of the Soa genotype on SOA avoidance is mediated by peripheral taste responsiveness to SOA, involving taste receptor cells innervated by both the CT and GL nerves. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Recommanded Product: (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Recommanded Product: (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Miller, Matthew B. et al. published their research in Preprints of Symposia – American Chemical Society, Division of Fuel Chemistry in 2011 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Recommanded Product: (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Physical solvents that are alternatives for PEGDME in CO2 absorption was written by Miller, Matthew B.;Luebke, David R.;Enick, Robert M.. And the article was included in Preprints of Symposia – American Chemical Society, Division of Fuel Chemistry in 2011.Recommanded Product: (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

Advanced gasification power plants will employ the water-gas shift reaction producing a high pressure gas-phase mixture containing CO2, H2 and water. This gas mixture at elevated pressures provides ample driving force to use a phys. solvent that will selectively absorb, not chem. bind, to the CO2. Potential phys. absorbers include (a) liquid mixtures of CO2-philic polydisperse oligomers, (b) small, volatile, liquid CO2-philic solvents, and (c) CO2-philic solids capable of melting in the presence of CO2. This study identified alternative phys. solvents that would selectively dissolve only CO2 from this mixture The first phase of research compared the CO2 solvent strength of poly(propylene glycol) di-Me ether (PEGDME) with that of other low volatility oligomers known to be “CO2-philic”. These oligomeric solvent candidates include PPGDME, poly(propylene glycol) di-acetate (PPGDAc), poly(butylene glycol) di-acetate (PBGDAc) with linear or branched C4 monomers, poly(di-Me siloxane) (PDMS), perfluoropolyether (PFPE), and glycerol tri-acetate (GTA). Pressure-composition phase diagrams are presented for the pseudo-binary systems of CO2 with PEGDME n = 6, PPGDME n = 6, PDMS n = 6, PBGDAc n = 3.2, PPGDAc n = 6.7, and GTA (which is analogous to a trimer of polyvinyl acetate), each at 25° and 40°. Although the performance of PPGDME, PEGDME and PDMS are comparable on a weight basis, PPGDME and PDMS appear to be the best CO2 solvents based on the ability to absorb CO2. Viscosity at 22° and 40°, a property of interest upon commercialization of these compounds, indicated PDMS is significantly less viscous than all others, including PEGDME. Further, PDMS and PFPE are essentially immiscible with water, and water is only slightly soluble in PPG- and PBG-based oligomers and GTA, whereas water and PPGDME are completely miscible. Small volatile CO2 solvents were examined in the second phase of this work. Phase behavior results in the form of pressure-composition diagrams are presented for the binary systems of CO2 and acetone, Me acetate, 1,4-dioxane, 2-methoxyethyl acetate, methanol, 2-nitropropane, n,n-dimethylacetamide, acetylacetone, 1-nitropropane, isooctane, 2-(2-butoxyethoxy)ethyl acetate, n-formylmorpholine, propylene carbonate, 2-butoxyethyl acetate, and n-tert-butylformamide. Acetone, Me acetate and 1,4-dioxane are the most CO2-philic compounds on a weight basis; however, their b.ps. are relatively low. Acetone, Me acetate and 1,4-dioxane are the most CO2-philic compounds on a weight basis, however, their b.ps. are relatively low. 2-Methoxyethyl acetate, the next best solvent, has a significantly higher b.p. The best performing solvents on a molar basis are 2-(2-butoxyethoxy)ethyl acetate, Me acetate, and 2-methoxyethyl acetate. Hydrocarbon solvents that are highly oxygenated tend to be CO2-philic so long as the oxygens are contained in carbonyl group, ether, or acetate groups. The hydroxyl group, however, is a CO2-phobic moiety. Last, solid CO2-philes have been investigated as a potential CO2 solvent. These solids are typically sugar acetates, or benzene rings having tert-Bu groups and acetate groups attached to the aromatic ring the benzene, or ether oxygens within the ring. The solid solvents that were investigated are β-D-ribofuranose 1,2,3,5-tetraacetate, 2,6-di-tert-butyl-4-methylphenol, 1,2,4-triacetoxybenzene, 2,4-di-tert-butylphenol, sucrose octaacetate, and 1,3,5-trioxane. The unique property of solid solvents is that the CO2 can be desorbed at an elevated pressure (the three-phase SLV pressure), as opposed to a typical pressure swing desorption pressure that is usually around or a little above 1 atm. The ability of these solvents to melt in the presence of substantial amounts of hydrogen in the gas mixture and selectively absorb CO2 will be presented. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Recommanded Product: (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Recommanded Product: (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yan, Xiangyang et al. published their research in Henan Gongye Daxue Xuebao, Ziran Kexueban in 2008 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 126-14-7

Synthesis of sucrose octaacetate by K2CO3/γ-Al2O3 was written by Yan, Xiangyang;Yang, Xinli;Liu, Jianping;Ma, Xueping. And the article was included in Henan Gongye Daxue Xuebao, Ziran Kexueban in 2008.Application of 126-14-7 This article mentions the following:

The sucrose octaacetate was prepared by esterification of acetic anhydride and sucrose with K2CO3/γ-Al2O3 as catalyst. The influencing factors on the esterification such as the reaction temperature, reaction time, the amount of catalyst and the molar ratio of sugar to diacetyl oxide were investigated. It was found that the optimal conditions were as follows: the amount of catalyst was 6.5%, reaction time was 4 h, the molar ratio of sugar to diacetyl oxide was 1:11, and the reaction temperature was 125°. Under these conditions, the yield of esterification could reach up to 92.6%. The results of test of melting and IR verified that the purity of prepared product was agreed with the American product. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Application of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Rogachevskaja, Olga A. et al. published their research in Biochemical and Biophysical Research Communications in 2011 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Category: tetrahydrofurans

Stimulation of the extracellular Ca2+-sensing receptor by denatonium was written by Rogachevskaja, Olga A.;Churbanov, Gleb D.;Bystrova, Marina F.;Romanov, Roman A.;Kolesnikov, Stanislav S.. And the article was included in Biochemical and Biophysical Research Communications in 2011.Category: tetrahydrofurans This article mentions the following:

The extracellular Ca2+-sensing receptor (CASR) is a promiscuous G-protein-coupled receptor closely related to the taste receptors T1R1-T1R3. Here we analyzed the possibility that apart from being stimulated by external Ca2+ and amino acids, the substances effective as tastants, CASR might serve as a receptor for other sapid compounds CASR was heterologously expressed in HEK-293 cells, and their responsivity to a variety of bitter and sweet substances was examined Among them, solely denatonium was found to stimulate Ca2+ signaling in CASR-pos. HEK-293 cells. Apparently, these Ca2+ responses were specific, as those were inhibited by the CASR antagonist NSP-4123. Altogether, our findings indicate that denatonium stimulates CASR by shifting a dose-response curve for the principal CASR agonist Ca2+ to lower concentrations In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Category: tetrahydrofurans).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem