Kaminska, E. et al. published their research in European Journal of Pharmaceutics and Biopharmaceutics in 2014 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C28H38O19

Impact of low molecular weight excipient octaacetylmaltose on the liquid crystalline ordering and molecular dynamics in the supercooled liquid and glassy state of itraconazole was written by Kaminska, E.;Tarnacka, M.;Kolodziejczyk, K.;Dulski, M.;Zakowiecki, D.;Hawelek, L.;Adrjanowicz, K.;Zych, M.;Garbacz, G.;Kaminski, K.. And the article was included in European Journal of Pharmaceutics and Biopharmaceutics in 2014.Synthetic Route of C28H38O19 This article mentions the following:

Different exptl. and theor. techniques were applied to investigate basic phys. properties of very stable and homogeneous solid dispersions formed by itraconazole and octaacetylmaltose. Differential scanning calorimetry as well as semi-empirical calculations have indicated that liquid crystalline ordering in itraconazole was completely suppressed in the binary mixtures Mol. dynamics studies with the use of broadband dielec. spectroscopy have shown that the width of the structural relaxation process becomes smaller and fragility drops in solid dispersions with respect to the pure itraconazole. Moreover, the dynamics of secondary relaxation processes was affected by acetylated maltose. As demonstrated, β- and γ-secondary modes shift to higher and lower frequencies, resp. On the other hand, aging experiments revealed that isostructural relaxation times in the glassy state become systematically longer with the addition of modified carbohydrate. This is a very important finding in the context of the current discussion on the factors affecting phys. stability of easily crystallizing APIs. It seems that beside intermol. interactions and local reorientation, the global mobility might control the crystallization of amorphous solid dispersions. Finally, we have demonstrated that itraconazole in binary mixtures dissolves faster and to greater extent with respect to the crystalline and amorphous form of this API. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Synthetic Route of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Antony, Anu et al. published their research in ACS Sustainable Chemistry & Engineering in 2018 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 126-14-7

Sizing and Desizing of Cotton and Polyester Yarns Using Liquid and Supercritical Carbon Dioxide with Nonfluorous CO2-Philes as Size Compounds was written by Antony, Anu;Raj, Anila;Ramachandran, Jyothi P.;Ramakrishnan, Resmi M.;Wallen, Scott L.;Raveendran, Poovathinthodiyil. And the article was included in ACS Sustainable Chemistry & Engineering in 2018.Reference of 126-14-7 This article mentions the following:

In this work, we demonstrate a completely green and economically viable sizing and desizing process for cotton and polyester yarns using liquid and supercritical CO2 as alternative solvent systems and inexpensive, nonfluorous CO2-philes as size compounds The size performance of sucrose octaacetate (SOA), α-D-glucose pentaacetate (AGLU), and poly(ethylene glycol) (PEG) are studied. The mech. properties of the sized yarn, as well as the optical and electron microscopic studies, are carried out to evaluate the quality of sizing. It is shown that SOA is the most suitable candidate as the size compound as it provides the best surface coverage and improved mech. properties for the yarn, plausibly assisted by the formation of a smooth and glassy coating of SOA on the yarn. For AGLU and SOA, complete desizing is easily effected by virtue of their complete miscibility with liquid and supercritical CO2 at low pressures. It is observed that the desizing of the PEG-sized yarn is difficult due to the poor solubility of the size in the CO2-based solvent systems. The entire size materials and the solvent can be recycled, making it a zero-pollution technol. that can easily be translated into industry at an affordable cost. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Reference of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Tian, Hongyuan et al. published their research in Huozhayao Xuebao in 2002 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Synthetic Route of C28H38O19

A spectrophotometric method for determining sucrose octaacetate in propellant materials was written by Tian, Hongyuan;Ge, Yanping;Qin, Chaomei;Zhao, Tiezhu;Ning, Yanli. And the article was included in Huozhayao Xuebao in 2002.Synthetic Route of C28H38O19 This article mentions the following:

Color reaction between sucrose octaacetate (over the range 0-350 μg) and anthrone reagent was studied. The temperature of color reaction was controlled at 85-95°, and the reaction time was controlled 10 min. Beer law was obeyed at 620 nm. Accuracy test showed that average value was 6.11% and the standard deviation 0.04%. The results indicated that the method is sensitive, selective, and rapid. It is used to determine sucrose octaacetate in propellant materials with satisfactory result. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Synthetic Route of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Synthetic Route of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yu, Zhelin et al. published their research in Journal of Magnetic Resonance in 2015 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Field-stepped direct detection electron paramagnetic resonance was written by Yu, Zhelin;Liu, Tengzhi;Elajaili, Hanan;Rinard, George A.;Eaton, Sandra S.;Eaton, Gareth R.. And the article was included in Journal of Magnetic Resonance in 2015.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

The widest scan that had been demonstrated previously for rapid scan EPR was a 155 G sinusoidal scan. As the scan width increases, the voltage requirement across the resonating capacitor and scan coils increases dramatically and the background signal induced by the rapidly changing field increases. An alternate approach is needed to achieve wider scans. A field-stepped direct detection EPR method that is based on rapid-scan technol. is now reported, and scan widths up to 6200 G have been demonstrated. A linear scan frequency of 5.12 kHz was generated with the scan driver described previously. The field was stepped at intervals of 0.01 to 1 G, depending on the linewidths in the spectra. At each field data for triangular scans with widths up to 11.5 G were acquired. Data from the triangular scans were combined by matching DC offsets for overlapping regions of successive scans. This approach has the following advantages relative to CW, several of which are similar to the advantages of rapid scan. (i) In CW if the modulation amplitude is too large, the signal is broadened. In direct detection field modulation is not used. (ii) In CW the small modulation amplitude detects only a small fraction of the signal amplitude. In direct detection each scan detects a larger fraction of the signal, which improves the signal-to-noise ratio. (iii) If the scan rate is fast enough to cause rapid scan oscillations, the slow scan spectrum can be recovered by deconvolution after the combination of segments. (iv) The data are acquired with quadrature detection, which permits phase correction in the post processing. (v) In the direct detection method the signal typically is oversampled in the field direction. The number of points to be averaged, thereby improving the signal-to-noise ratio, is determined in post processing based on the desired field resolution A degased lithium phthalocyanine sample was used to demonstrate that the linear deconvolution procedure can be employed with field-stepped direct detection EPR signals. Field-stepped direct detection EPR spectra were obtained for Cu2+ doped in Ni(diethyldithiocarbamate)2, Cu2+ doped in Zn tetratolylporphyrin, perdeuterated tempone in sucrose octaacetate, vanadyl ion doped in a parasubstituted Zn tetratolylporphyrin, Mn2+ impurity in CaO, and an oriented crystal of Mn2+ doped in Mg(acetylacetonate)2(H2O)2. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Damak, Sami et al. published their research in Chemical Senses in 2006 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Formula: C28H38O19

Trpm5 Null Mice Respond to Bitter, Sweet, and Umami Compounds was written by Damak, Sami;Rong, Minqing;Yasumatsu, Keiko;Kokrashvili, Zaza;Perez, Cristian A.;Shigemura, Noriatsu;Yoshida, Ryusuke;Mosinger, Bedrich Jr.;Glendinning, John I.;Ninomiya, Yuzo;Margolskee, Robert F.. And the article was included in Chemical Senses in 2006.Formula: C28H38O19 This article mentions the following:

Trpm5 is a calcium-activated cation channel expressed selectively in taste receptor cells. A previous study reported that mice with an internal deletion of Trpm5, lacking exons 15-19 encoding transmembrane segments 1-5, showed no taste-mediated responses to bitter, sweet, and umami compounds We independently generated knockout mice null for Trpm5 protein expression due to deletion of Trpm5’s promoter region and exons 1-4 (including the translation start site). We examined the taste-mediated responses of Trpm5 null mice and wild-type (WT) mice using three procedures: gustatory nerve recording [chorda tympani (CT) and glossopharyngeal (NG) nerves], initial lick responses, and 24-h two-bottle preference tests. With bitter compounds, the Trpm5 null mice showed reduced, but not abolished, avoidance (as indicated by licking responses and preference ratios higher than those of WT), a normal CT response, and a greatly diminished NG response. With sweet compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, and absent or greatly reduced nerve responses. With umami compounds, Trpm5 null mice showed no licking response, a diminished preference ratio, a normal NG response, and a greatly diminished CT response. Our results demonstrate that the consequences of eliminating Trpm5 expression vary depending upon the taste quality and the lingual taste field examined Thus, while Trpm5 is an important factor in many taste responses, its absence does not eliminate all taste responses. We conclude that Trpm5-dependent and Trpm5-independent pathways underlie bitter, sweet, and umami tastes. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Formula: C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Formula: C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Patil, Basanagoud S. et al. published their research in Indian Journal of Chemistry in 2004 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Recommanded Product: 126-14-7

A rapid and convenient synthesis of α and β forms of acetylated derivatives of sugars under microwave irradiation was written by Patil, Basanagoud S.;Babu, Vommina V. Suresh. And the article was included in Indian Journal of Chemistry in 2004.Recommanded Product: 126-14-7 This article mentions the following:

In a novel method, the synthesis of α and β forms of penta as well as octa acetyl derivatives of several sugars under microwave irradiation with improved yields is described. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Recommanded Product: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Recommanded Product: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Marais, Jannie P. J. et al. published their research in Journal of Agricultural and Food Chemistry in 2000 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Recommanded Product: 126-14-7

Polyphenols, Condensed Tannins, and Other Natural Products in Onobrychis viciifolia (Sainfoin) was written by Marais, Jannie P. J.;Mueller-Harvey, Irene;Brandt, E. Vincent;Ferreira, Daneel. And the article was included in Journal of Agricultural and Food Chemistry in 2000.Recommanded Product: 126-14-7 This article mentions the following:

An acetone/water extract of the fodder legume Onobrychis viciifolia afforded arbutin, kaempferol, quercetin, rutin, afzelin, the branched quercetin-3-(2G-rhamnosylrutinoside), the amino acid L-tryptophan, the inositol (+)-pinitol, and relatively high concentrations of sucrose (ca. 35% of extractable material). Acid-catalyzed cleavage of the condensed tannins with phloroglucinol afforded catechin, epicatechin and gallocatechin as the terminal and extender units, but epigallocatechin was only present in extender units. The condensed tannins in O. viciifolia presumably consist of hetero- and homopolymers containing both procyanidin and prodelphinidin units. Comparison of data from the present study and the literature suggests that sainfoin tannins have a highly variable composition, with cis:trans ratios ranging from 47:53 to 90:10 and delphinidin:cyanidin ratios from 36:64 to 93:7. The composition of terminal and extender units in sainfoin tannins seems to be cultivar specific. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Recommanded Product: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Recommanded Product: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kaminska, E. et al. published their research in European Journal of Pharmaceutics and Biopharmaceutics in 2014 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C28H38O19

Impact of low molecular weight excipient octaacetylmaltose on the liquid crystalline ordering and molecular dynamics in the supercooled liquid and glassy state of itraconazole was written by Kaminska, E.;Tarnacka, M.;Kolodziejczyk, K.;Dulski, M.;Zakowiecki, D.;Hawelek, L.;Adrjanowicz, K.;Zych, M.;Garbacz, G.;Kaminski, K.. And the article was included in European Journal of Pharmaceutics and Biopharmaceutics in 2014.Synthetic Route of C28H38O19 This article mentions the following:

Different exptl. and theor. techniques were applied to investigate basic phys. properties of very stable and homogeneous solid dispersions formed by itraconazole and octaacetylmaltose. Differential scanning calorimetry as well as semi-empirical calculations have indicated that liquid crystalline ordering in itraconazole was completely suppressed in the binary mixtures Mol. dynamics studies with the use of broadband dielec. spectroscopy have shown that the width of the structural relaxation process becomes smaller and fragility drops in solid dispersions with respect to the pure itraconazole. Moreover, the dynamics of secondary relaxation processes was affected by acetylated maltose. As demonstrated, β- and γ-secondary modes shift to higher and lower frequencies, resp. On the other hand, aging experiments revealed that isostructural relaxation times in the glassy state become systematically longer with the addition of modified carbohydrate. This is a very important finding in the context of the current discussion on the factors affecting phys. stability of easily crystallizing APIs. It seems that beside intermol. interactions and local reorientation, the global mobility might control the crystallization of amorphous solid dispersions. Finally, we have demonstrated that itraconazole in binary mixtures dissolves faster and to greater extent with respect to the crystalline and amorphous form of this API. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Synthetic Route of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Antony, Anu et al. published their research in ACS Sustainable Chemistry & Engineering in 2018 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 126-14-7

Sizing and Desizing of Cotton and Polyester Yarns Using Liquid and Supercritical Carbon Dioxide with Nonfluorous CO2-Philes as Size Compounds was written by Antony, Anu;Raj, Anila;Ramachandran, Jyothi P.;Ramakrishnan, Resmi M.;Wallen, Scott L.;Raveendran, Poovathinthodiyil. And the article was included in ACS Sustainable Chemistry & Engineering in 2018.Reference of 126-14-7 This article mentions the following:

In this work, we demonstrate a completely green and economically viable sizing and desizing process for cotton and polyester yarns using liquid and supercritical CO2 as alternative solvent systems and inexpensive, nonfluorous CO2-philes as size compounds The size performance of sucrose octaacetate (SOA), α-D-glucose pentaacetate (AGLU), and poly(ethylene glycol) (PEG) are studied. The mech. properties of the sized yarn, as well as the optical and electron microscopic studies, are carried out to evaluate the quality of sizing. It is shown that SOA is the most suitable candidate as the size compound as it provides the best surface coverage and improved mech. properties for the yarn, plausibly assisted by the formation of a smooth and glassy coating of SOA on the yarn. For AGLU and SOA, complete desizing is easily effected by virtue of their complete miscibility with liquid and supercritical CO2 at low pressures. It is observed that the desizing of the PEG-sized yarn is difficult due to the poor solubility of the size in the CO2-based solvent systems. The entire size materials and the solvent can be recycled, making it a zero-pollution technol. that can easily be translated into industry at an affordable cost. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Reference of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Tian, Hongyuan et al. published their research in Huozhayao Xuebao in 2002 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Synthetic Route of C28H38O19

A spectrophotometric method for determining sucrose octaacetate in propellant materials was written by Tian, Hongyuan;Ge, Yanping;Qin, Chaomei;Zhao, Tiezhu;Ning, Yanli. And the article was included in Huozhayao Xuebao in 2002.Synthetic Route of C28H38O19 This article mentions the following:

Color reaction between sucrose octaacetate (over the range 0-350 μg) and anthrone reagent was studied. The temperature of color reaction was controlled at 85-95°, and the reaction time was controlled 10 min. Beer law was obeyed at 620 nm. Accuracy test showed that average value was 6.11% and the standard deviation 0.04%. The results indicated that the method is sensitive, selective, and rapid. It is used to determine sucrose octaacetate in propellant materials with satisfactory result. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Synthetic Route of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Synthetic Route of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem