Nunez, Isaac et al. published their research in Clinical Microbiology and Infection in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Related Products of 2492423-29-5

Hospitalization as an outcome in ambulatory COVID-19 trials-not applicable in every setting was written by Nunez, Isaac;Valdes-Ferrer, Sergio Ivan;Soto-Mota, Adrian. And the article was included in Clinical Microbiology and Infection in 2022.Related Products of 2492423-29-5 The following contents are mentioned in the article:

A review. The COVID-19 pandemic has stressed hospitals worldwide. Thus, most randomized trials have focused on hospitalized patients, and their primary outcomes have frequently included mech. ventilation and death. It is only until recently that treatments for ambulatory patients (remdesivir, molnupiravir, and nirmatrelvir)havebeenincludedbytheInfectiousDiseasesSociety of America in their COVID-19 guidelines. The PINETREE trial evaluated the use of remdesivir in ambulatory patients with a high risk of developing severe COVID-19. Addnl.,largevariabilitywithineachtrial is possible given different sites could have different hospital capacity, hospital occupancy, and COVID-19 caseload could bedifferent according to the geog. area. While randomization may help to reduce this bias, different recruitment rates at distinct sites may still introduce variability. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Related Products of 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Related Products of 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Mudgal, Rajat et al. published their research in FEBS Letters in 2020 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Synthetic Route of C11H13IN4O4

Inhibition of Chikungunya virus by an adenosine analog targeting the SAM-dependent nsP1 methyltransferase was written by Mudgal, Rajat;Mahajan, Supreeti;Tomar, Shailly. And the article was included in FEBS Letters in 2020.Synthetic Route of C11H13IN4O4 The following contents are mentioned in the article:

Alphaviruses, including Chikungunya (CHIKV) and Venezuelan equine encephalitis virus (VEEV), are among the leading causes of recurrent epidemics all over the world. Alphaviral nonstructural protein 1 (nsP1) orchestrates the capping of nascent viral RNA via its S-adenosyl methionine-dependent N-7-methyltransferase (MTase) and guanylyltransferase activities. We developed and validated a novel capillary electrophoresis (CE)-based assay for measuring the MTase activity of purified VEEV and CHIKV nsP1. We employed the assay to assess the MTase inhibition efficiency of a few adenosine analogs and identified 5-iodotubercidin (5-IT) as an inhibitor of nsP1. The antiviral potency of 5-IT was evaluated in vitro using a combination of cell-based assays, which suggest that 5-IT is efficacious against CHIKV in cell culture (EC50: 0.409μM). This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Synthetic Route of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Synthetic Route of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Jia, Wendong et al. published their research in ACS Sensors in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Quality Control of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

A Nanopore Based Molnupiravir Sensor was written by Jia, Wendong;Hu, Chengzhen;Wang, Yuqin;Zhang, Panke;Chen, Hong-Yuan;Huang, Shuo. And the article was included in ACS Sensors in 2022.Quality Control of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate The following contents are mentioned in the article:

Nucleoside analogs are reagents that resemble the structure of natural nucleosides and are widely applied in antiviral and anticancer therapy. Molnupiravir, a recently reported nucleoside analog drug, has shown its inhibitory effect against SARS-CoV-2. Rapid tracing of molnupiravir and its metabolites is important in the evaluation its pharmacol. effect, but direct sensing of molnupiravir as a single mol. has not been reported to date. Here, we demonstrate a nanopore-based sensor with which direct sensing of molnupiravir and its two major metabolites β-D-N4-hydroxycytidine and its triphosphate can be achieved simultaneously. In conjunction with a custom machine learning algorithm, an accuracy of 92% was achieved. This sensing strategy may be useful in the current pandemic and is in principle suitable for other nucleoside analog drugs. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Quality Control of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Quality Control of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Syed, Yahiya Y. et al. published their research in Drugs in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C13H19N3O7

Molnupiravir: First Approval was written by Syed, Yahiya Y.. And the article was included in Drugs in 2022.Synthetic Route of C13H19N3O7 The following contents are mentioned in the article:

Molnupiravir (Lagevrio) is an orally-administered antiviral prodrug that inhibits replication of RNA viruses through viral error induction. It is being developed by Merck and Ridgeback Biotherapeutics for the prevention and treatment of Coronavirus disease 2019 (COVID-19). Molnupiravir received its first approval on 4 Nov. 2021 in the UK for the treatment of mild to moderate COVID-19 in adults with a pos. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic test and who have at least one risk factor for developing severe illness. Molnupiravir is filed for approval and has emergency use authorization for the treatment of COVID-19 in several countries, including the USA, Japan and those in the EU. This article summarizes the milestones in the development of molnupiravir leading to this first approval for COVID-19. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Synthetic Route of C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Fatima, Maurish et al. published their research in European Journal of Internal Medicine in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Computed Properties of C13H19N3O7

Efficacy and safety of molnupiravir for COVID-19 patients was written by Fatima, Maurish;Azeem, Saleha;Saeed, Junaid;Shahid, Abia;Cheema, Huzaifa Ahmad. And the article was included in European Journal of Internal Medicine in 2022.Computed Properties of C13H19N3O7 The following contents are mentioned in the article:

Our study include the inability to investigate more subgroups as we used study level data instead of individual patient data, and the unavailability of the results of two trials which may result in publication bias. We conducted this meta-anal. to increase the statistical power of the available evidence by combining it and evaluating the safety and efficacy of molnupiravir for the treatment of COVID-19 patients. It may be speculated that molnupiravir may only be effective in some subgroups of hospitalized patients; therefore, publication of the results of these trials might help in investigating this. In conclusion, our study supports the use of molnupiravir in non- hospitalized patients with COVID-19. Further research should be focused on evaluating its comparative efficacy in relation to other available treatments. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Computed Properties of C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Computed Properties of C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kestav, Katrin et al. published their research in Bioconjugate Chemistry in 2015 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 24386-93-4

Bisubstrate Inhibitor Approach for Targeting Mitotic Kinase Haspin was written by Kestav, Katrin;Lavogina, Darja;Raidaru, Gerda;Chaikuad, Apirat;Knapp, Stefan;Uri, Asko. And the article was included in Bioconjugate Chemistry in 2015.Reference of 24386-93-4 The following contents are mentioned in the article:

During the past decade, the basophilic atypical kinase Haspin has emerged as a key player in mitosis responsible for phosphorylation of Thr3 residue of histone H3. Here, we report the construction of conjugates comprising an aromatic fragment targeted to the ATP-site of Haspin and a peptide mimicking the N-terminus of histone H3. The combination of effective solid phase synthesis procedures and a high throughput binding/displacement assay with fluorescence anisotropy readout afforded the development of inhibitors with remarkable subnanomolar affinity toward Haspin. The selectivity profiles of novel conjugates were established by affinity studies with a model basophilic kinase (catalytic subunit of cAMP-dependent protein kinase) and by a com. 1-point inhibition assay with 43 protein kinases. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Reference of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Shen, Hai-Ying et al. published their research in Epilepsia in 2010 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Electric Literature of C11H13IN4O4

A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance was written by Shen, Hai-Ying;Li, Tianfu;Boison, Detlev. And the article was included in Epilepsia in 2010.Electric Literature of C11H13IN4O4 The following contents are mentioned in the article:

Sudden unexpected death in epilepsy (SUDEP) is a significant cause of mortality in people with epilepsy. Two postulated causes for SUDEP, cardiac and respiratory depression, can both be explained by overstimulation of adenosine receptors. We hypothesized that SUDEP is a consequence of a surge in adenosine as a result of prolonged seizures combined with deficient adenosine clearance; consequently, blockade of adenosine receptors should prevent SUDEP. Here we induced impaired adenosine clearance in adult mice by pharmacol. inhibition of the adenosine-removing enzymes, adenosine kinase and deaminase. Combination of impaired adenosine clearance with kainic acid-induced seizures triggered sudden death in all animals. Most importantly, the adenosine receptor antagonist caffeine, when given after seizure onset, increased survival from 23.75 ± 1.35 min to 54.86 ± 6.59 min (p < 0.01). Our data indicate that SUDEP is due to overactivation of adenosine receptors and that caffeine treatment after seizure onset might be beneficial. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Electric Literature of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Electric Literature of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Schroeder, Martin et al. published their research in Journal of Medicinal Chemistry in 2020 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Electric Literature of C11H13IN4O4

DFG-1 Residue Controls Inhibitor Binding Mode and Affinity, Providing a Basis for Rational Design of Kinase Inhibitor Selectivity was written by Schroeder, Martin;Bullock, Alex N.;Fedorov, Oleg;Bracher, Franz;Chaikuad, Apirat;Knapp, Stefan. And the article was included in Journal of Medicinal Chemistry in 2020.Electric Literature of C11H13IN4O4 The following contents are mentioned in the article:

Selectivity remains a challenge for ATP-mimetic kinase inhibitors, an issue that may be overcome by targeting unique residues or binding pockets. However, to date only few strategies have been developed. Here we identify that bulky residues located N-terminal to the DFG motif (DFG-1) represent an opportunity for designing highly selective inhibitors with unexpected binding modes. We demonstrate that several diverse inhibitors exerted selective, noncanonical binding modes that exclusively target large hydrophobic DFG-1 residues present in many kinases including PIM, CK1, DAPK, and CLK. By use of the CLK family as a model, structural and biochem. data revealed that the DFG-1 valine controlled a noncanonical binding mode in CLK1, providing a rationale for selectivity over the closely related CLK3 which harbors a smaller DFG-1 alanine. Our data suggest that targeting the restricted back pocket in the small fraction of kinases that harbor bulky DFG-1 residues offers a versatile selectivity filter for inhibitor design. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Electric Literature of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Electric Literature of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Painter, George R. et al. published their research in Current Opinion in Virology in 2021 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C13H19N3O7

Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19 was written by Painter, George R.;Natchus, Michael G.;Cohen, Oren;Holman, Wendy;Painter, Wendy P.. And the article was included in Current Opinion in Virology in 2021.Computed Properties of C13H19N3O7 The following contents are mentioned in the article:

Despite the availability of vaccines, there remains an urgent need for antiviral drugs with potent activity against SARS-CoV-2, the cause of COVID-19. Millions of people are immune-suppressed and may not be able to mount a fully protective immune response after vaccination. There is also an increasingly critical need for a drug to cover emerging SARS-CoV-2 variants, against which existing vaccines may be less effective. Here, we describe the evolution of molnupiravir (EIDD-2801, MK-4482), a broad-spectrum antiviral agent originally designed for the treatment of Alphavirus infections, into a potential drug for the prevention and treatment of COVID-19. When the pandemic began, molnupiravir was in pre-clin. development for the treatment of seasonal influenza. As COVID-19 spread, the timeline for the development program was moved forward significantly, and focus shifted to treatment of coronavirus infections. Real time consultation with regulatory authorities aided in making the acceleration of the program possible. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Computed Properties of C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Heroven, Christina et al. published their research in Angewandte Chemie, International Edition in 2018 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Formula: C11H13IN4O4

Halogen-aromatic π interactions modulate inhibitor residence times was written by Heroven, Christina;Georgi, Victoria;Ganotra, Gaurav K.;Brennan, Paul;Wolfreys, Finn;Wade, Rebecca C.;Fernandez-Montalvan, Amaury E.;Chaikuad, Apirat;Knapp, Stefan. And the article was included in Angewandte Chemie, International Edition in 2018.Formula: C11H13IN4O4 The following contents are mentioned in the article:

Prolonged drug residence times may result in longer-lasting drug efficacy, improved pharmacodynamic properties, and “kinetic selectivity” over off-targets with high drug dissociation rates. However, few strategies have been elaborated to rationally modulate drug residence time and thereby to integrate this key property into the drug development process. Herein, we show that the interaction between a halogen moiety on an inhibitor and an aromatic residue in the target protein can significantly increase inhibitor residence time. By using the interaction of the serine/threonine kinase haspin with 5-iodotubercidin (5-iTU) derivatives as a model for an archetypal active-state (type I) kinase-inhibitor binding mode, we demonstrate that inhibitor residence times markedly increase with the size and polarizability of the halogen atom. The halogen-aromatic π interactions in the haspin-inhibitor complexes were characterized by means of kinetic, thermodn., and structural measurements along with binding-energy calculations This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Formula: C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Formula: C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem