Hooshmand, Seyed Aghil et al. published their research in Molecular Diversity in 2021 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application of 2492423-29-5

A multimodal deep learning-based drug repurposing approach for treatment of COVID-19 was written by Hooshmand, Seyed Aghil;Zarei Ghobadi, Mohadeseh;Hooshmand, Seyyed Emad;Azimzadeh Jamalkandi, Sadegh;Alavi, Seyed Mehdi;Masoudi-Nejad, Ali. And the article was included in Molecular Diversity in 2021.Application of 2492423-29-5 The following contents are mentioned in the article:

Abstract: Recently, various computational methods have been proposed to find new therapeutic applications of the existing drugs. The Multimodal Restricted Boltzmann Machine approach (MM-RBM), which has the capability to connect the information about the multiple modalities, can be applied to the problem of drug repurposing. The present study utilized MM-RBM to combine two types of data, including the chem. structures data of small mols. and differentially expressed genes as well as small mols. perturbations. In the proposed method, two sep. RBMs were applied to find out the features and the specific probability distribution of each datum (modality). Besides, RBM was used to integrate the discovered features, resulting in the identification of the probability distribution of the combined data. The results demonstrated the significance of the clusters acquired by our model. These clusters were used to discover the medicines which were remarkably similar to the proposed medications to treat COVID-19. Moreover, the chem. structures of some small mols. as well as dysregulated genes’ effect led us to suggest using these mols. to treat COVID-19. The results also showed that the proposed method might prove useful in detecting the highly promising remedies for COVID-19 with min. side effects. All the source codes are accessible using https://github.com/LBBSoft/Multimodal-Drug-Repurposing.git Graphic abstract: [graphic not available: see fulltext]. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Application of 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application of 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yu, Wenyu et al. published their research in Bioorganic & Medicinal Chemistry in 2013 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 24386-93-4

Bromo-deaza-SAH: A potent and selective DOT1L inhibitor was written by Yu, Wenyu;Smil, David;Li, Fengling;Tempel, Wolfram;Fedorov, Oleg;Nguyen, Kong T.;Bolshan, Yuri;Al-Awar, Rima;Knapp, Stefan;Arrowsmith, Cheryl H.;Vedadi, Masoud;Brown, Peter J.;Schapira, Matthieu. And the article was included in Bioorganic & Medicinal Chemistry in 2013.Application of 24386-93-4 The following contents are mentioned in the article:

Chem. inhibition of proteins involved in chromatin-mediated signaling is an emerging strategy to control chromatin compaction with the aim to reprogram expression networks to alter disease states. Protein methyltransferases constitute one of the protein families that participate in epigenetic control of gene expression, and represent a novel therapeutic target class. Recruitment of the protein lysine methyltransferase DOT1L at aberrant loci is a frequent mechanism driving acute lymphoid and myeloid leukemias, particularly in infants, and pharmacol. inhibition of DOT1L extends survival in a mouse model of mixed lineage leukemia. A better understanding of the structural chem. of DOT1L inhibition would accelerate the development of improved compounds Here, we report that the addition of a single halogen atom at a critical position in the cofactor product S-adenosylhomocysteine (SAH, an inhibitor of SAM-dependent methyltransferases) results in an 8-fold increase in potency against DOT1L, and reduced activities against other protein and non-protein methyltransferases. We solved the crystal structure of DOT1L in complex with Bromo-deaza-SAH and rationalized the observed effects. This discovery reveals a simple strategy to engineer selectivity and potency towards DOT1L into the adenosine scaffold of the cofactor shared by all methyltransferases, and can be exploited towards the development of clin. candidates against mixed lineage leukemia. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Application of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Faingold, Carl L. et al. published their research in Epilepsy Research in 2016 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Synthetic Route of C11H13IN4O4

Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine was written by Faingold, Carl L.;Randall, Marc;Kommajosyula, Srinivasa P.. And the article was included in Epilepsy Research in 2016.Synthetic Route of C11H13IN4O4 The following contents are mentioned in the article:

Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Synthetic Route of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Synthetic Route of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Mauchle, Ulrike et al. published their research in Veterinary Journal in 2015 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C11H13IN4O4

Identification of anti-proliferative kinase inhibitors as potential therapeutic agents to treat canine osteosarcoma was written by Mauchle, Ulrike;Selvarajah, Gayathri T.;Mol, Jan A.;Kirpensteijn, Jolle;Verheije, Monique H.. And the article was included in Veterinary Journal in 2015.Computed Properties of C11H13IN4O4 The following contents are mentioned in the article:

Osteosarcoma is the most common primary bone tumor in dogs but various forms of therapy have not significantly improved clin. outcomes. As dysregulation of kinase activity is often present in tumors, kinases represent attractive mol. targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated.The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Computed Properties of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Mirza, Nasir et al. published their research in Human Molecular Genetics in 2017 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C11H13IN4O4

Identifying new antiepileptic drugs through genomics-based drug repurposing was written by Mirza, Nasir;Sills, Greame J.;Pirmohamed, Munir;Marson, Anthony G.. And the article was included in Human Molecular Genetics in 2017.COA of Formula: C11H13IN4O4 The following contents are mentioned in the article:

Currently available antiepileptic drugs (AEDs) fail to control seizures in 30% of patients. Genomics-based drug repurposing (GBR) offers the potential of savings in the time and cost of developing new AEDs. In the current study, we used published data and software to identify the transcriptomic signature of chornic temporal lobe epilepsy and the drugs that reverse it. After filtering out compounds based on exclusion criteria, such as toxicity, 36 drugs were retained. 11 of the 36 drugs identified (>30%) have published evidence of the antiepileptic efficacy (for example, curcumin) or antiepileptogenic affect (for example, atorvastatin) in recognized rodent models or patients. By objectively annotating all ∼20,000 compounds in the LINCS database as either having published evidence of antiepileptic efficacy or lacking such evidence, we demonstrated that our set of repurposable drugs is ∼6-fold more enriched with drugs having published evidence of antiepileptic efficacy in animal models than expected by chance (P-value <0.006). Further, we showed that another of our GBR-identified drugs, the commonly-used well-tolerated antihyperglycemic sitagliptin, produces a dose-dependent reduction in seizures in a mouse model of pharmacoresistant epilepsy. In conclusion, GBR successfully identifies compounds with antiepileptic efficacy in animal models and, hence, it is an appealing methodol. for the discovery of potential AEDs. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4COA of Formula: C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Peairs, A. et al. published their research in Clinical and Experimental Immunology in 2009 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C11H13IN4O4

Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells was written by Peairs, A.;Radjavi, A.;Davis, S.;Li, L.;Ahmed, A.;Giri, S.;Reilly, C. M.. And the article was included in Clinical and Experimental Immunology in 2009.Synthetic Route of C11H13IN4O4 The following contents are mentioned in the article:

Recent reports show that 5-amino-4-imidazole carboxamide riboside (AICAR), a pharmacol. activator of AMP-activated protein kinase (AMPK), inhibits the lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. MRL/MPJ-Faslpr (MRL/lpr) mice show an intrinsic decreased threshold for the production of inflammatory mediators when stimulated. In our current studies, we sought to determine if AMPK activation would inhibit inflammatory mediator production in stimulated kidney mesangial cells. Cultured mesangial cells from MRL/lpr mice were treated with AICAR and stimulated with LPS/interferon (IFN)-γ. AICAR decreased dose-dependently inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and interleukin-6 production in LPS/IFN-γ-stimulated mesangial cells. Mechanistically, AICAR inhibited the LPS/IFN-γ-stimulated PI3K/Akt signalling inflammatory cascade but did not affect LPS/IFN-γ-mediated inhibitory kappa B phosphorylation or nuclear factor (NF)-κB (p65) nuclear translocation. Treatment with the adenosine kinase inhibitor 5′-iodotubercidin blocked the ability of AICAR to activate AMPK and prevented AICAR from inhibiting the LPS/IFN-γ-stimulated PI3K/Akt pathway and attenuating iNOS expression. Taken together, these observations suggest that AICAR inhibits LPS/IFN-γ-induced Akt phosphorylation through AMPK activation and may serve as a potential therapeutic target in inflammatory diseases. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Synthetic Route of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Vanhulle, Emiel et al. published their research in Antiviral Research in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Synthetic Route of C13H19N3O7

SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening was written by Vanhulle, Emiel;Stroobants, Joren;Provinciael, Becky;Camps, Anita;Noppen, Sam;Maes, Piet;Vermeire, Kurt. And the article was included in Antiviral Research in 2022.Synthetic Route of C13H19N3O7 The following contents are mentioned in the article:

Despite the great success of the administered vaccines against SARS-CoV-2, the virus can still spread, as evidenced by the current circulation of the highly contagious Omicron variant. This emphasizes the addnl. need to develop effective antiviral countermeasures. In the context of early preclin. studies for antiviral assessment, robust cellular infection systems are required to screen drug libraries. In this study, we reported the implementation of a human glioblastoma cell line, stably expressing ACE2, in a SARS-CoV-2 cytopathic effect (CPE) reduction assay. These glioblastoma cells, designated as U87.ACE2+, expressed ACE2 and cathepsin B abundantly, but had low cellular levels of TMPRSS2 and cathepsin L. The U87. ACE2+ cells fused highly efficiently and quickly with SARS-CoV-2 spike expressing cells. Furthermore, upon infection with SARS-CoV-2 wild-type virus, the U87.ACE2+ cells displayed rapidly a clear CPE that resulted in complete cell lysis and destruction of the cell monolayer. By means of several readouts we showed that the U87.ACE2+ cells actively replicate SARS-CoV-2. Interestingly, the U87.ACE2+ cells could be successfully implemented in an MTS-based colorimetric CPE reduction assay, providing IC50 values for Remdesivir and Nirmatrelvir in the (low) nanomolar range. Lastly, the U87.ACE2+ cells were consistently permissive to all tested SARS-CoV-2 variants of concern, including the current Omicron variant. Thus, ACE2 expressing glioblastoma cells are highly permissive to SARS-CoV-2 with productive viral replication and with the induction of a strong CPE that can be utilized in high-throughput screening platforms. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Synthetic Route of C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Synthetic Route of C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ramirez, Christina N. et al. published their research in Assay and Drug Development Technologies in 2011 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Formula: C11H13IN4O4

Validation of a High-Content Screening Assay Using Whole-Well Imaging of Transformed Phenotypes was written by Ramirez, Christina N.;Ozawa, Tatsuya;Takagi, Toshimitsu;Antczak, Christophe;Shum, David;Graves, Robert;Holland, Eric C.;Djaballah, Hakim. And the article was included in Assay and Drug Development Technologies in 2011.Formula: C11H13IN4O4 The following contents are mentioned in the article:

Automated microscopy was introduced two decades ago and has become an integral part of the discovery process as a high-content screening platform with noticeable challenges in executing cell-based assays. It would be of interest to use it to screen for reversers of a transformed cell phenotype. In this report, we present data obtained from an optimized assay that identifies compounds that reverse a transformed phenotype induced in NIH-3T3 cells by expressing a novel oncogene, KP, resulting from fusion between platelet derived growth factor receptor alpha (PDGFRα) and kinase insert domain receptor (KDR), that was identified in human glioblastoma. Initial image acquisitions using multiple tiles per well were found to be insufficient as to accurately image and quantify the clusters; whole-well imaging, performed on the IN Cell Analyzer 2000, while still two-dimensional imaging, was found to accurately image and quantify clusters, due largely to the inherent variability of their size and well location. The resulting assay exhibited a Z’ value of 0.79 and a signal-to-noise ratio of 15, and it was validated against known effectors and shown to identify only PDGFRα inhibitors, and then tested in a pilot screen against a library of 58 known inhibitors identifying mostly PDGFRα inhibitors as reversers of the KP induced transformed phenotype. In conclusion, our optimized and validated assay using whole-well imaging is robust and sensitive in identifying compounds that reverse the transformed phenotype induced by KP with a broader applicability to other cell-based assays that are challenging in HTS against chem. and RNAi libraries. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Formula: C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Formula: C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wanounou, Maor et al. published their research in Clinical Pharmacokinetics in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 2492423-29-5

Clinically Relevant Interactions Between Ritonavir-Boosted Nirmatrelvir and Concomitant Antiseizure Medications: Implications for the Management of COVID-19 in Patients with Epilepsy was written by Wanounou, Maor;Caraco, Yoseph;Levy, Rene H.;Bialer, Meir;Perucca, Emilio. And the article was included in Clinical Pharmacokinetics in 2022.Reference of 2492423-29-5 The following contents are mentioned in the article:

A review. Ritonavir-boosted nirmatrelvir (RBN) has been authorized recently in several countries as an orally active anti-SARS-CoV-2 treatment for patients at high risk of progressing to severe COVID-19 disease. Nirmatrelvir is the active component against the SARS-CoV-2 virus, whereas ritonavir, a potent CYP3A inhibitor, is intended to boost the activity of nirmatrelvir by increasing its concentration in plasma to ensure persistence of antiviral concentrations during the 12-h dosing interval. RBN is involved in many clin. important drug-drug interactions both as perpetrator and as victim, which can complicate its use in patients treated with antiseizure medications (ASMs). Interactions between RBN and ASMs are bidirectional. As perpetrator, RBN may increase the plasma concentration of a number of ASMs that are CYP3A4 substrates, possibly leading to toxicity. As victims, both nirmatrelvir and ritonavir are subject to metabolic induction by concomitant treatment with potent enzyme-inducing ASMs (carbamazepine, phenytoin, phenobarbital and primidone). According to US and European prescribing information, treatment with these ASMs is a contraindication to the use of RBN. Although remdesivir is a valuable alternative to RBN, it may not be readily accessible in some settings due to cost and/or need for i.v. administration. If remdesivir is not an appropriate option, either bebtelovimab or molnupiravir may be considered. However, evidence about the clin. efficacy of bebtelovimab is still limited, and molnupiravir, the only orally active alternative, is deemed to have appreciably lower efficacy than RBN and remdesivir. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Reference of 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Niu, Yuzhen et al. published their research in Chemometrics and Intelligent Laboratory Systems in 2016 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Safety of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Revealing the molecular mechanism of different residence times of ERK2 inhibitors via binding free energy calculation and unbinding pathway analysis was written by Niu, Yuzhen;Pan, Dabo;Yang, Yongjiu;Liu, Huanxiang;Yao, Xiaojun. And the article was included in Chemometrics and Intelligent Laboratory Systems in 2016.Safety of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

SCH772984, VTX-11e, FR180204 and 5-iTU are four promising inhibitors targeting ERK2 kinase with high bioactivity. These four inhibitors also have different residence times and binding modes with the ERK2 kinase. Revealing the mol. mechanism of different residence times of ERK2 inhibitors is helpful for designing more efficient inhibitors. The mol. mechanics/generalized Born surface area (MM/GBSA) method was used to calculate the binding free energy and identify the key residues for the ERK2 protein binding to the four inhibitors. Steered mol. dynamics (SMD) and adaptive biasing force (ABF) simulations were employed to investigate the mol. mechanism behind this difference in residence time and binding mode. The binding free energy decomposition by the MM/GBSA method reveals the residues Y27, K45, I47, P49, Y55, R58, T59, Q96 and G160 located around the allosteric binding pocket play an important role in determining the longer residence time of SCH772984. The results from the SMD and the ABF simulations show SCH772984 has different unbinding mechanism compared with the other three inhibitors. SCH772984 needs to overcome two energy barriers: one is the π-π stacking interaction formed by the piperazine-phenyl-pyrimidine of SCH772984 and the residue Y55 of the ERK2 kinase; the other is the hydrophobic interaction at the ATP active site. VTX-11e, FR180204 and 5-iTU just need to overcome the hydrophobic interaction at the ATP active site. Our simulation results are useful to understand the interaction mechanism between four inhibitors and ERK2 kinase and are helpful for designing more potent ERK2 inhibitors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Safety of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Safety of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem