Zou, Rongrong et al. published their research in Frontiers in Pharmacology in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Computed Properties of C13H19N3O7

Antiviral efficacy and safety of molnupiravir against omicron variant infection: a randomized controlled clinical trial was written by Zou, Rongrong;Peng, Ling;Shu, Dan;Zhao, Lei;Lan, Jianfeng;Tan, Guoyu;Peng, Jinghan;Yang, Xiangyi;Liu, Miaona;Zhang, Chenhui;Yuan, Jing;Wang, Huxiang;Li, Song;Lu, Hongzhou;Zhong, Wu;Liu, Yingxia. And the article was included in Frontiers in Pharmacology in 2022.Computed Properties of C13H19N3O7 The following contents are mentioned in the article:

The rapid worldwide spread of the Omicron variant of SARS-CoV-2 has unleashed a new wave of COVID-19 outbreaks. The efficacy of molnupiravir, an approved drug, is still unknown in patients infected with the Omicron variant. Evaluated the antiviral efficacy and safety of molnupiravir in patients infected with SARS-CoV-2 Omicron variant, with symptom duration within 5 days. We conducted a randomized, controlled trial involving patients with mild or moderate COVID-19. Patients were randomized to orally receive molnupiravir (800 mg) plus basic treatment or only basic treatment for 5 days (BID). The antiviral efficacy of the drug was evaluated using reverse transcriptase polymerase chain reaction. Results showed that the time of viral RNA clearance (primary endpoint) was significantly decreased in the molnupiravir group (median, 9 days) compared to the control group (median, 10 days) (Log-Rank p = 0.0092). Of patients receiving molnupiravir, 18.42% achieved viral RNA clearance on day 5 of treatment, compared to the control group (0%) (p = 0.0092). On day 7, 40.79%, and 6.45% of patients in the molnupiravir and control groups, resp., achieved viral RNA clearance (p = 0.0004). In addition, molnupiravir has a good safety profile, and no serious adverse events were reported. Molnupiravir significantly accelerated the SARS-CoV-2 Omicron RNA clearance in patients with COVID-19. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Computed Properties of C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Computed Properties of C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Sui, Liyan et al. published their research in Journal of Cellular Physiology in 2020 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Inhibition of HDAC6 by tubastatin A disrupts mouse oocyte meiosis via regulating histone modifications and mRNA expression was written by Sui, Liyan;Huang, Rong;Yu, Hao;Zhang, Sheng;Li, Ziyi. And the article was included in Journal of Cellular Physiology in 2020.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Histone deacetylase 6 (HDAC6) participates in mouse oocyte maturation by deacetylating α-tubulin. However, how HDAC6 expression is regulated in oocytes remains unknown. In the present study, we discovered that mouse oocytes had a high level of HDAC6 expression and a low level of DNA methylation status in their promoter region. Then, a selective HDAC6 inhibitor, tubastatin A (Tub-A) was chosen to investigate the role of HDAC6 in oocyte maturation. Our results revealed that inhibition of HDAC6 caused meiotic progression arrest, disturbed spindle/chromosome organization, and kinetochore-microtubule attachments without impairing spindle assembly checkpoint function. Moreover, inhibition of HDAC6 not only increased the acetylation of α-tubulin but also elevated the acetylation status of H4K16 and decreased the phosphorylation level of H3T3 and H3S10. Conversely, depressed H3T3 phosphorylation by its kinase inhibitor increased the acetylation level of H4K16. Finally, single cell RNA-seq anal. revealed that the cell cycle-related genes CCNB1, CDK2, SMAD3, YWHAZ and the methylation-related genes DNMT1 and DNMT3B were strongly repressed in Tub-A treated oocytes. Taken together, our results indicate that HDAC6 plays important roles in chromosome condensation and kinetochore function via regulating several key histone modifications and mRNA transcription during oocyte meiosis. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Yuexiang et al. published their research in Viruses in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.SDS of cas: 2492423-29-5

Molnupiravir and Its Active Form, EIDD-1931, Show Potent Antiviral Activity against Enterovirus Infections In Vitro and In Vivo was written by Li, Yuexiang;Liu, Miaomiao;Yan, Yunzheng;Wang, Zhuang;Dai, Qingsong;Yang, Xiaotong;Guo, Xiaojia;Li, Wei;Chen, Xingjuan;Cao, Ruiyuan;Zhong, Wu. And the article was included in Viruses in 2022.SDS of cas: 2492423-29-5 The following contents are mentioned in the article:

Enterovirus infections can cause hand, foot, and mouth disease (HFDM), aseptic meningitis, encephalitis, myocarditis, and acute flaccid myelitis, leading to death of infants and young children. However, no specific antiviral drug is currently available for the treatment of this type of infection. The Unites States and United Kingdom health authorities recently approved a new antiviral drug, molnupiravir, for the treatment of COVID-19. In this study, we reported that molnupiravir (EIDD-2801) and its active form, EIDD-1931, have broad-spectrum anti-enterovirus potential. Our data showed that EIDD-1931 could significantly reduce the production of EV-A71 progeny virus and the expression of EV-A71 viral protein at non-cytotoxic concentrations The results of the time-of-addition assay suggest that EIDD-1931 acts at the post-entry step, which is in accordance with its antiviral mechanism. The i.p. administration of EIDD-1931 and EIDD-2801 protected 1-day-old ICR suckling mice from lethal EV-A71 challenge by reducing the viral load in various tissues of the infected mice. The pharmacokinetics anal. indicated that the plasma drug concentration overwhelmed the EC50 for enteroviruses, suggesting the clin. potential of molnupiravir against enteroviruses. Thus, molnupiravir along with its active form, EIDD-1931, may be a promising drug candidate against enterovirus infections. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5SDS of cas: 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.SDS of cas: 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Stoilov, Peter et al. published their research in Proceedings of the National Academy of Sciences of the United States of America in 2008 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Recommanded Product: 24386-93-4

A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators was written by Stoilov, Peter;Lin, Chia-Ho;Damoiseaux, Robert;Nikolic, Julia;Black, Douglas L.. And the article was included in Proceedings of the National Academy of Sciences of the United States of America in 2008.Recommanded Product: 24386-93-4 The following contents are mentioned in the article:

Alternative splicing has emerged as a promising therapeutic target in a number of human disorders. However, the discovery of compounds that target the splicing reaction has been hindered by the lack of suitable high-throughput screening assays. Conversely, the effects of known drugs on the splicing reaction are mostly unclear and not routinely assessed. We have developed a two-color fluorescent reporter for cellular assays of exon inclusion that can accommodate nearly any cassette exon and minimizes interfering effects from changes in transcription and translation. We used microtubule-associated protein tau (MAPT) exon 10, whose mis-splicing causes frontotemporal dementia, to test the reporter in screening libraries of known bioactive compounds These screens yielded several compounds that alter the splicing of the exon, both in the reporter and in the endogenous MAPT mRNA. One compound, digoxin, has long been used in the treatment of heart failure, but was not known to modulate splicing. The pos. compounds target different signal transduction pathways, and microarray anal. shows that each compound affects the splicing of a different set of exons in addition to MAPT exon 10. Our results identify currently prescribed cardiotonic steroids as modulators of alternative splicing and demonstrate the feasibility of screening for drugs that alter exon inclusion. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Recommanded Product: 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Recommanded Product: 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wang, Qianqian et al. published their research in Physical Chemistry Chemical Physics in 2021 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Reference of 24386-93-4

Exploring the thermodynamic, kinetic and inhibitory mechanisms of 5-iTU targeting mitotic kinase haspin by integrated molecular dynamics was written by Wang, Qianqian;Zhang, Qinggao;Leung, Elaine Lai Han;Chen, Yingqing;Yao, Xiaojun. And the article was included in Physical Chemistry Chemical Physics in 2021.Reference of 24386-93-4 The following contents are mentioned in the article:

As a human mitotic kinase, haspin is considered as a promising target for various diseases including cancers. However, no inhibitors targeting haspin have entered clin. trials presently. 5-iTU (5-iodotubercidin) is a useful and classical chem. probe for the investigation of haspin activity, but its inhibitory mechanism remains unclear. In this study, integrated mol. dynamics (MD) of conventional MD, extended adaptive biasing force (eABF), random acceleration MD and well-tempered metadynamics were applied to investigate the thermodn. and kinetic features of 5-iTU and three derivatives targeting haspin. To emphasize the importance of gatekeeper Phe605, two haspin mutants (F605Y and F605T) were also built. The results showed that the binding affinity of 5-iTU and haspin was highest in all wild type (WT) systems, relying on the strong halogen aromatic π interaction between 5-iTU and gatekeeper Phe605. Gatekeeper mutations, because of damage to this interaction, led to the rearrangement of water distributions at the binding site and the decrease of 5-iTU residence times. Addnl., compared with the smaller 5-fTU, 5-iTU dissociated from WT haspin with more difficulty through distinct unbinding pathways. These findings will provide crucial guidance for the design and development of novel haspin inhibitors and the rational modification of existing inhibitors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Reference of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Reference of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Chung, Eun Jee et al. published their research in Scientific Reports in 2017 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

AICAR suppresses TNF-α-induced complement factor B in RPE cells was written by Chung, Eun Jee;Efstathiou, Nikolaos E.;Konstantinou, Eleni K.;Maidana, Daniel E.;Miller, Joan W.;Young, Lucy H.;Vavvas, Demetrios G.. And the article was included in Scientific Reports in 2017.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Age related macular degeneration is the leading cause of blindness in the developed world. Although its precise cause remains elusive, dysfunction of the retinal pigment epithelium (RPE) and dysregulation of complement have been implicated in its pathogenesis. The goal of this study was to evaluate the role of an AMP-dependent kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide riboside (AICAR), on tumor necrosis factor alpha (TNF-α) induction of complement factor B (CFB) in RPE cells. We found that AICAR inhibited TNF-α-induced CFB expression in ARPE-19 and human primary RPE cells in a dose-dependent fashion. Treatment of cells with dipyridamole, which blocks AICAR cellular uptake abolished these effects. In contrast, the adenosine kinase inhibitor, 5-iodotubericidin, which inhibits the conversion of AICAR to the direct activator of AMPK, ZMP, did not reverse the effects on TNF-α-induced CFB expression, suggesting AMPK-independent effects. Indeed, knockout of AMPK in RPE cells using Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 did not abolish the inhibitory effects of AICAR on RPE CFB expression. Collectively, our results suggest that AICAR can suppress TNF-α-induced CFB expression in RPE cells in an AMPK-independent mechanism, and could be used as a therapeutic target in certain complement over-activation scenarios. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Otsuguro, Ken-ichi et al. published their research in Neuropharmacology in 2015 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Product Details of 24386-93-4

An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat was written by Otsuguro, Ken-ichi;Tomonari, Yuki;Otsuka, Saori;Yamaguchi, Soichiro;Kon, Yasuhiro;Ito, Shigeo. And the article was included in Neuropharmacology in 2015.Product Details of 24386-93-4 The following contents are mentioned in the article:

Adenosine kinase (AK) inhibitor is a potential candidate for controlling pain, but some AK inhibitors have problems of adverse effects such as motor impairment. ABT-702, a non-nucleoside AK inhibitor, shows analgesic effect in animal models of pain. Here, we investigated the effects of ABT-702 on synaptic transmission via nociceptive and motor reflex pathways in the isolated spinal cord of neonatal rats. The release of adenosine from the spinal cord was measured by HPLC. ABT-702 inhibited slow ventral root potentials (sVRPs) in the nociceptive pathway more potently than monosynaptic reflex potentials (MSRs) in the motor reflex pathway. The inhibitory effects of ABT-702 were mimicked by exogenously applied adenosine, blocked by 8CPT (8-cyclopentyl-1,3-dipropylxanthine), an adenosine A1 receptor antagonist, and augmented by EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), an adenosine deaminase (ADA) inhibitor. Equilibrative nucleoside transporter (ENT) inhibitors reversed the effects of ABT-702, but not those of adenosine. ABT-702 released adenosine from the spinal cord, an effect that was also reversed by ENT inhibitors. The ABT-702-facilitated release of adenosine by way of ENTs inhibits nociceptive pathways more potently than motor reflex pathways in the spinal cord via activation of A1 receptors. This feature is expected to lead to good analgesic effects, but, caution may be required for the use of AK inhibitors in the case of ADA dysfunction or a combination with ENT inhibitors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Product Details of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Product Details of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ashraf, Omar et al. published their research in Neuropharmacology in 2021 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 24386-93-4

Suppression of phrenic nerve activity as a potential predictor of imminent sudden unexpected death in epilepsy (SUDEP) was written by Ashraf, Omar;Huynh, Trong;Purnell, Benton S.;Murugan, Madhuvika;Fedele, Denise E.;Chitravanshi, Vineet;Boison, Detlev. And the article was included in Neuropharmacology in 2021.Reference of 24386-93-4 The following contents are mentioned in the article:

Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacol. suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p lt 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Reference of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Krishna, Sankar N. et al. published their research in PLoS One in 2013 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Product Details of 24386-93-4

A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4 was written by Krishna, Sankar N.;Luan, Chi-Hao;Mishra, Rama K.;Xu, Li;Scheidt, Karl A.;Anderson, Wayne F.;Bergan, Raymond C.. And the article was included in PLoS One in 2013.Product Details of 24386-93-4 The following contents are mentioned in the article:

Prostate cancer (PCa) is the second highest cause of cancer death in United States males. If the metastatic movement of PCa cells could be inhibited, then mortality from PCa could be greatly reduced. Mitogen-activated protein kinase kinase 4 (MAP2K4) has previously been shown to activate pro-invasion signaling pathways in human PCa. Recognizing that MAP2K4 represents a novel and validated therapeutic target, we sought to develop and characterize an efficient process for the identification of small mols. that target MAP2K4. Using a fluorescence-based thermal shift assay (FTS) assay, we first evaluated an 80 compound library of known kinase inhibitors, thereby identifying 8 hits that thermally stabilized MAP2K4 in a concentration dependent manner. We then developed an in vitro MAP2K4 kinase assay employing the biol. relevant downstream substrates, JNK1 and p38 MAPK, to evaluate kinase inhibitory function. In this manner, we validated the performance of our initial FTS screen. We next applied this approach to a 2000 compound chem. diverse library, identified 7 hits, and confirmed them in the in vitro kinase assay. Finally, by coupling our structure-activity relationship data to MAP2K4’s crystal structure, we constructed a model for ligand binding. It predicts binding of our identified inhibitory compounds to the ATP binding pocket. Herein we report the creation of a robust inhibitor-screening platform with the ability to inform the discovery and design of new and potent MAP2K4 inhibitors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Product Details of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Product Details of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Hadj Hassine, Ikbel et al. published their research in Viruses in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Safety of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity was written by Hadj Hassine, Ikbel;Ben M’hadheb, Manel;Menendez-Arias, Luis. And the article was included in Viruses in 2022.Safety of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate The following contents are mentioned in the article:

A review. In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens, driving viral populations to extinction. Extinction catastrophe can be exptl. induced by promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2-deoxycytidine while producing a two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug of β-d-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection. Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting their extended use in antiviral therapy. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Safety of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Safety of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem