Li, Xiaona et al. published their research in Organic Letters in 2019 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C12H20O6

Gold(I)-Catalyzed Glycosylation with Glycosyl Ynenoates as Donors was written by Li, Xiaona;Li, Chenyu;Liu, Rongkun;Wang, Jiazhe;Wang, Zixuan;Chen, Yan;Yang, You. And the article was included in Organic Letters in 2019.Synthetic Route of C12H20O6 This article mentions the following:

A simple and versatile glycosylation method with both armed and disarmed glycosyl ynenoates as donors is developed. Employing a gold(I) complex as catalyst with or without the assistance of TfOH, the scope of the present glycosylation protocol is very wide. The utility of the present ynenoate donors is demonstrated in the efficient synthesis of oligosaccharides via the latent-active strategy and the multiple orthogonal one-pot strategy. Finally, this approach enables the formal synthesis of the tetrasaccharide hapten of Streptococcus pneumoniae serotype 3 and the highly convergent synthesis of the 32mer polymannoside. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Synthetic Route of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Lin, Quan et al. published their research in ACS Catalysis in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Ni-Catalyzed Formal Cross-Electrophile Coupling of Alcohols with Aryl Halides was written by Lin, Quan;Ma, Guobin;Gong, Hegui. And the article was included in ACS Catalysis in 2021.Application In Synthesis of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol This article mentions the following:

A strategy building upon in-situ halogenation/reductive coupling of alcs. with aryl halides to forge Csp2-Csp3 bonds was demonstrated. The combination of 2-chloro-3-ethylbenzo[d]oxazol-3-ium salt (CEBO) and TBAB as the mild bromination reagents enabled rapid transformation of a wide range of alcs. to their bromide counterparts within one to 5 min in CH3CN and DMF, which was compatible with the Ni-catalyzed cross-electrophile coupling conditions in the presence of a chem. reductant. The method is suitable for arylation of a myriad of structurally complex alcs. with no need for prepreparation of alkyl halides. More importantly, the mild and kinetically rapid bromination process showed good selectivity in the bromination/arylation of sym. diols and less sterically hindered hydroxyl groups in polyols, thus offering promise for selective functionalization of diols and polyols without laborious protecting/deprotecting operations. The practicality of this work was also evident in the arylation of a number of carbohydrates, drug compounds, and naturally occurring alcs. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Application In Synthesis of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Rbaa, M. et al. published their research in Inorganic Chemistry Communications in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Synthetic Route of C12H20O6

Selective synthesis of new sugars based on 8-hydroxyquinoline as corrosion inhibitors for mild steel in HCl solution-effect of the saturated hydrocarbon chain: Theoretical and experimental studies was written by Rbaa, M.;Abousalem, Ashraf S.;Rouifi, Z.;Lakhrissi, L.;Galai, M.;Zarrouk, A.;Lakhrissi, B.;Lakhrissi, Y.. And the article was included in Inorganic Chemistry Communications in 2020.Synthetic Route of C12H20O6 This article mentions the following:

New glucose derivatives based on 8-hydroxyquinoline have been prepared, and characterized by IR, and NMR (1H and 13C NMR). These compounds were tested as a corrosion inhibitors of mild steel in 1.0 M HCl medium, using mass loss (ML), Potentio-dynamic polarization (PDP), electrochem. impedance spectroscopy (EIS), d. functional theory (DFT) and monte carlo simulation (MCS). The surface of the steel after corrosion test has been characterized by scanning electron spectroscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The corrosive solutions have been characterized by UV-visible spectrometry (UV-vis). The inhibitory efficacy increases with decreasing temperature and increases with inhibitor concentration and reached to 96.5% for the best inhibitor at 298 K and the optimum concentration (1 x 10-3 M). The results of the studies show that these compounds are effective in the corrosion inhibition of mild steel, and the inhibition efficiency depends on the length of the saturated carbon chain. The polarization study shows that the two inhibitors act as mixed type inhibitors. The results of thermodn. studies show that the two compounds are absorbed on the metal surface by chem. bonds (Chemisorption) following Langmuir isotherm. UV-visible anal. shows that the two compounds capable of forming chem. bonds with the iron metal. The theor. studies are in good agreement with those of the exptl. studies. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Synthetic Route of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Synthetic Route of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Shanthamurthy, Chethan D. et al. published their research in Journal of Medicinal Chemistry in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C12H20O6

Heparan Sulfate Mimetics Differentially Affect Homologous Chemokines and Attenuate Cancer Development was written by Shanthamurthy, Chethan D.;Leviatan Ben-Arye, Shani;Kumar, Nanjundaswamy Vijendra;Yehuda, Sharon;Amon, Ron;Woods, Robert J.;Padler-Karavani, Vered;Kikkeri, Raghavendra. And the article was included in Journal of Medicinal Chemistry in 2021.Synthetic Route of C12H20O6 This article mentions the following:

Achieving selective inhibition of chemokine activity by structurally well-defined heparan sulfate (HS) or HS mimetic mols. can provide important insights into their roles in individual physiol. and pathol. cellular processes. Here, we report a novel tailor-made HS mimetic, which furnishes an exclusive iduronic acid (IdoA) scaffold with different sulfation patterns and oligosaccharide chain lengths as potential ligands to target chemokines. Notably, highly sulfated-IdoA tetrasaccharide (I-45)(I) exhibited strong binding to CCL2 chemokine thereby blocking CCL2/CCR2-mediated in vitro cancer cell invasion and metastasis. Taken together, IdoA-based HS mimetics offer an alternative HS substrate to generate selective and efficient inhibitors for chemokines and pave the way to a wide range of new therapeutic applications in cancer biol. and immunol. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Synthetic Route of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Castoldi, Laura et al. published their research in Chemical Communications (Cambridge, United Kingdom) in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Quality Control of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Transition metal-free and regioselective vinylation of phosphine oxides and H-phosphinates with VBX reagents was written by Castoldi, Laura;Rajkiewicz, Adam A.;Olofsson, Berit. And the article was included in Chemical Communications (Cambridge, United Kingdom) in 2020.Quality Control of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol This article mentions the following:

A series of phosphine oxides and H-phosphinates were vinylated in the presence of the iodine(III) reagents vinylbenziodoxolones (VBX), providing the corresponding alk-1-enyl phosphine oxides and alk-1-enyl phosphinates in good yields with complete chemo- and regioselectivity. The vinylation proceeds in open flask under mild and transition metal-free conditions. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Quality Control of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Quality Control of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ma, Xu et al. published their research in Journal of the American Chemical Society in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

A “Traceless” Directing Group Enables Catalytic SN2 Glycosylation toward 1,2-cis-Glycopyranosides was written by Ma, Xu;Zheng, Zhitong;Fu, Yue;Zhu, Xijun;Liu, Peng;Zhang, Liming. And the article was included in Journal of the American Chemical Society in 2021.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol This article mentions the following:

Generally applicable and stereoselective formation of 1,2-cis-glycopyranosidic linkage remains a long-sought-after yet unmet goal in carbohydrate chem. This work advances a strategy to this challenge via stereo-inversion at the anomeric position of 1,2-trans glycosyl ester donors. This SN2 glycosylation is enabled under gold catalysis by an oxazole-based directing group optimally tethered to a leaving group and achieved under mild catalytic conditions, in mostly excellent yields, and with good to outstanding selectivities. The strategy is also applied to the synthesis of oligosaccharides. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Huang, Zhiliang et al. published their research in Journal of the American Chemical Society in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C12H20O6

Oxidative Cleavage of Alkenes by O2 with a Non-Heme Manganese Catalyst was written by Huang, Zhiliang;Guan, Renpeng;Shanmugam, Muralidharan;Bennett, Elliot L.;Robertson, Craig M.;Brookfield, Adam;McInnes, Eric J. L.;Xiao, Jianliang. And the article was included in Journal of the American Chemical Society in 2021.Computed Properties of C12H20O6 This article mentions the following:

The oxidative cleavage of C=C double bonds with mol. oxygen to produce carbonyl compounds is an important transformation in chem. and pharmaceutical synthesis. In nature, enzymes containing the first-row transition metals, particularly heme and non-heme iron-dependent enzymes, readily activate O2 and oxidatively cleave C=C bonds with exquisite precision under ambient conditions. The reaction remains challenging for synthetic chemists, however. There are only a small number of known synthetic metal catalysts that allow for the oxidative cleavage of alkenes at an atm. pressure of O2, with very few known to catalyze the cleavage of nonactivated alkenes. In this work, we describe a light-driven, Mn-catalyzed protocol for the selective oxidation of alkenes to carbonyls under 1 atm of O2. For the first time, aromatic as well as various nonactivated aliphatic alkenes could be oxidized to afford ketones and aldehydes under clean, mild conditions with a first row, biorelevant metal catalyst. Moreover, the protocol shows a very good functional group tolerance. Mechanistic investigation suggests that Mn-oxo species, including an asym., mixed-valent bis(μ-oxo)-Mn(III,IV) complex, are involved in the oxidation, and the solvent methanol participates in O2 activation that leads to the formation of the oxo species. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Computed Properties of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wang, Zhan et al. published their research in Bioorganic & Medicinal Chemistry in 2022 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.HPLC of Formula: 582-52-5

Design, synthesis and biological evaluation of colchicine glycoconjugates as tubulin polymerization inhibitors was written by Wang, Zhan;Liu, Runlai;Zhang, Xin;Chang, Xing;Gao, Minghuan;Zhang, Shuai;Guan, Qi;Sun, Jun;Zuo, Daiying;Zhang, Weige. And the article was included in Bioorganic & Medicinal Chemistry in 2022.HPLC of Formula: 582-52-5 This article mentions the following:

A series of new colchicine glycoconjugates as tubulin polymerization inhibitors were designed by targeting strategy based on Warburg effect. All of the colchicine glycoconjugates were synthesized and then evaluated for their antiproliferative activities against three human cancer lines HT-29, MCF-7 and Hep-3B. Among them, 1e exhibited greater than 10 times selectivity between GLUT1 highly expressed cells (HT-29 and MCF-7) and GLUT1 lowly expressed cells (Hep-3B), and also showed lower cytotoxicity against HUVECs compared with colchicine. Moreover, 1e significantly inhibited tubulin polymerization and disrupted microtubule networks. GLUT1 inhibitor-dependent cytotoxicity assay demonstrated that the uptake of 1e was regulated via GLUT1. Mol. docking studies showed that 1e could be a substrate of GLUT1 and bind to the colchicine site of tubulin. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5HPLC of Formula: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.HPLC of Formula: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Dong, Zhe et al. published their research in Nature (London, United Kingdom) in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.COA of Formula: C12H20O6

Metallaphotoredox-enabled deoxygenative arylation of alcohols was written by Dong, Zhe;MacMillan, David W. C.. And the article was included in Nature (London, United Kingdom) in 2021.COA of Formula: C12H20O6 This article mentions the following:

Metal-catalyzed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcs. remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcs. would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcs. must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of com. available, structurally diverse alcs. as coupling partners4. Authors report herein a metallaphotoredox-based cross-coupling platform in which free alcs. are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcs. as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technol. represents a general strategy for the merger of in situ alc. activation with transition metal catalysis. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5COA of Formula: C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.COA of Formula: C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Huang, Huan-Ming et al. published their research in Journal of the American Chemical Society in 2022 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Recommanded Product: (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Radical Carbonyl Umpolung Arylation via Dual Catalysis was written by Huang, Huan-Ming;Bellotti, Peter;Erchinger, Johannes E.;Paulisch, Tiffany O.;Glorius, Frank. And the article was included in Journal of the American Chemical Society in 2022.Recommanded Product: (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol This article mentions the following:

A series of aryl benzoates I [R = iPr, tBu, cyclohexyl, etc.; R1 = 4-NCC6H4, 2-NCC6H4, 2-pyridyl, etc.] via dual nickel and photoredox catalyzed radical carbonyl umpolung arylation of aldehydes and aryl bromides was reported. This redox-neutral approach provided a complementary method to construct Grignard-type products from (hetero)aryl bromides and aliphatic aldehydes, without the need for prefunctionalization. Sequential activation, hydrogen atom transfer and halogen atom transfer process could directly converted aldehydes to the corresponding ketyl radicals, which further react with aryl-nickel intermediates in an overall polarity-reversal process. This radical strategy tolerated-among others-acidic functional groups, heteroaryl motifs and sterically hindered substrates and was applied in the late-stage modification of drugs and natural products. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Recommanded Product: (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Recommanded Product: (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem