Shin, Il-Shik et al. published their research in Nucleosides & Nucleotides in 1995 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Application In Synthesis of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

Characterization of nucleoside phosphotransferase from Leishmania tropica was written by Shin, Il-Shik; Wataya, Yusuke. And the article was included in Nucleosides & Nucleotides on April 30,1995.Application In Synthesis of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol The following contents are mentioned in the article:

Nucleoside phosphotransferase, a unique purine salvage enzyme, was partially purified from L. tropica. The purified preparation was nucleosidase-free. With this enzyme preparation, phosphorylation of 14 nucleosides involving 5 antileishmanial purine nucleoside analogs was investigated. Apparent Km values of the enzyme for 10 purine nucleosides were in the range of 5.7-8.4 μM, and those for 4 natural pyrimidine nucleosides were in the range of 14.0-16.9 μM. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Application In Synthesis of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Application In Synthesis of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Rogne, Per et al. published their research in Proceedings of the National Academy of Sciences of the United States of America in 2018 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Molecular mechanism of ATP versus GTP selectivity of adenylate kinase was written by Rogne, Per; Rosselin, Marie; Grundstroem, Christin; Hedberg, Christian; Sauer, Uwe H.; Wolf-Watz, Magnus. And the article was included in Proceedings of the National Academy of Sciences of the United States of America on March 20,2018.Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Enzymic substrate selectivity is critical for the precise control of metabolic pathways. In cases where chem. related substrates are present inside cells, robust mechanisms of substrate selectivity are required. Here, we report the mechanism utilized for catalytic ATP vs. GTP selectivity during adenylate kinase (Adk)-mediated phosphorylation of AMP. Using NMR spectroscopy we found that while Adk adopts a catalytically competent and closed structural state in complex with ATP, the enzyme is arrested in a catalytically inhibited and open state in complex with GTP. X-ray crystallog. experiments revealed that the interaction interfaces supporting ATP and GTP recognition, in part, are mediated by coinciding residues. The mechanism provides an at. view on how the cellular GTP pool is protected from Adk turnover, which is important because GTP has many specialized cellular functions. In further support of this mechanism, a structure-function anal. enabled by synthesis of ATP analogs suggests that a hydrogen bond between the adenine moiety and the backbone of the enzyme is vital for ATP selectivity. The importance of the hydrogen bond for substrate selectivity is likely general given the conservation of its location and orientation across the family of eukaryotic protein kinases. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Tao, Nengguo et al. published their research in Food Chemistry in 2019 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

The terpene limonene induced the green mold of citrus fruit through regulation of reactive oxygen species (ROS) homeostasis in Penicillium digitatum spores was written by Tao, Nengguo; Chen, Yue; Wu, Yalan; Wang, Xiao; Li, Lu; Zhu, Andan. And the article was included in Food Chemistry on March 30,2019.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Herein, the dosage effect of limonene on the P. digitatum spore germination and its regulatory mechanisms were investigated. Results showed that limonene only at low concentrations displayed a stimulatory role, with the optimal concentration being 0.25 μL/mL. GC-MS and GC anal. revealed that limonene contents remained relative stable and no evidence of transformation was observed at stimulatory concentrations Metabolomics anal. showed that 61 metabolites including organic acids, amino acids, sugars, nucleosides, fatty acids, and their derivatives, were significantly changed (P < 0.05), suggesting the transitions between soluble sugars and energy-related metabolisms Proteomic anal. demonstrated that proteins in energy-related pathways and ROS homeostasis were also influenced. These were further confirmed by the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione-S-transferase (GST), the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), and glutathione (GSH). Our present research indicates that ROS homeostasis is involved in the limonene induced spore germination of P. digitatum. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Zhou, Xinrui et al. published their research in Catalysis Communications in 2019 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Formula: C10H12N4O4  

Biocatalytic synthesis of seleno-, thio- and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases was written by Zhou, Xinrui; Yan, Weizhu; Zhang, Chong; Yang, Zhaoyi; Neubauer, Peter; Mikhailopulo, Igor A.; Huang, Zhen. And the article was included in Catalysis Communications on March 5,2019.Formula: C10H12N4O4   The following contents are mentioned in the article:

Selenium-containing nucleosides are the building blocks of the Se-nucleic acids useful for structure-and-function study, drug discovery and for targeting nucleic acids and their protein complexes. However, chem. synthesis of these Se-containing nucleosides is labor-intensive and provides low overall yields. Thus, we decided to explore biocatalytic synthesis of the modified nucleosides (such as Se-nucleosides) by employing thermostable nucleoside phosphorylases from thermophilic microorganisms. We were surprised to discover that these enzymes can still recognize the nucleobases containing rather larger atoms, Se vs. O atom. These enzymes also showed excellent adaptability to some modified purines with high substrate conversion (up to 97%). This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Formula: C10H12N4O4  ).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Formula: C10H12N4O4  

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Sherwood, Trevor C. et al. published their research in Journal of Organic Chemistry in 2018 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Recommanded Product: 550-33-4

Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via N-(Acyloxy)phthalimides was written by Sherwood, Trevor C.; Li, Ning; Yazdani, Aliza N.; Dhar, T. G. Murali. And the article was included in Journal of Organic Chemistry on March 2,2018.Recommanded Product: 550-33-4 The following contents are mentioned in the article:

An improved, one-pot Minisci reaction has been developed using visible light, an organic photocatalyst, and carboxylic acids as radical precursors via the intermediacy of in situ-generated N-(acyloxy)phthalimides. The conditions employed are mild, demonstrate a high degree of functional group tolerance, and do not require a large excess of the carboxylic acid reactant. As a result, this reaction can be applied to drug-like scaffolds and mols. with sensitive functional groups, enabling late-stage functionalization, which is of high interest to medicinal chem. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Recommanded Product: 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Recommanded Product: 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Shiragami, Hiroshi et al. published their research in Nucleosides & Nucleotides in 1996 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

Synthesis of 2′,3′-dideoxypurinenucleosides via the palladium catalyzed reduction of 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-β-D-xylofuranosyl)purine derivatives was written by Shiragami, Hiroshi; Amino, Yusuke; Honda, Yutaka; Arai, Masayuki; Tanaka, Yasuhiro; Iwagami, Hisao; Yukawa, Toshihide; Izawa, Kunisuke. And the article was included in Nucleosides & Nucleotides on March 31,1996.Safety of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol The following contents are mentioned in the article:

Practical method to produce 2′,3′-dideoxypurinenucleosides from 9-(2,5-di-O-acetyl-3-bromo-3-deoxy-β-D-xylofuranosyl)purines (I; R1 = NH2, OH, R2 = H; R1 = OH, R2 = NHAc) was developed. High ratio of 2′,3′-dideoxynucleoside to 3′-deoxyribonucleoside was obtained by selecting the reaction conditions (solvent, pH and/or base), or changing 2′-acyloxy leaving group. The reaction mechanism was studied by deuteration experiments of I (R1 = NH2, R2 = H) and 1-(3,5-di-O-acetyl-2-bromo-2-deoxy-β-D-ribofuranosyl)thymine (II). This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Safety of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Ibrahim, Sabrin R. M. et al. published their research in Natural Products Journal in 2014 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.HPLC of Formula: 550-33-4

Megaspinoxide A: New Norterpene Cyclic Peroxide from the Sponge Diacarnus megaspinorhabdosa was written by Ibrahim, Sabrin R. M.; Al Haidari, Rwaida A.; Mohamed, Gamal A.. And the article was included in Natural Products Journal on March 31,2014.HPLC of Formula: 550-33-4 The following contents are mentioned in the article:

Re-investigation of the methanolic extract of the sponge Diacarnus megaspinorhabdosa afforded 1 new norsesterpene cyclic peroxide megaspinoxide A (I), together with 2 known compounds sigmosceptrellin B and nebularine. The structures of the isolated compounds were established on the basis of 1- and 2-dimensional NMR spectroscopic studies (1H, 13C, DEPT, COSY, HMQC, HMBC, and ROESY) as well as, mass spectral anal. The isolated compounds were evaluated for their cytotoxic and antimicrobial activities. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4HPLC of Formula: 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.HPLC of Formula: 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Bruns, Robert F. et al. published their research in Canadian Journal of Physiology and Pharmacology in 1980 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.HPLC of Formula: 13146-72-0

Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists was written by Bruns, Robert F.. And the article was included in Canadian Journal of Physiology and Pharmacology on June 30,1980.HPLC of Formula: 13146-72-0 The following contents are mentioned in the article:

Adenosine [58-61-7] (ED50 15 μM) causes a 50-fold increase in intracellular cyclic AMP in the VA13 human fibroblast line. A total of 128 nucleosides was tested as agonists and antagonists. Eight classes of compounds were found: full agonists (14 compounds), weak agonists (20), high-efficacy partial agonists (16), low-efficacy partial agonists (7), competitive inhibitors (11), noncompetitive inhibitors (3), partial agonist – noncompetitive inhibitors (3), and inactive compounds (54). The noncompetitive inhibitors antagonized the responses to adenosine, isoproterenol, and prostaglandin E1 and thus may have been adenylate cyclase inhibitors. The most potent noncompetitive inhibitor, 2′,5′-dideoxyadenosine [6698-26-6] was a partial inhibitor, reducing the response to isoproterenol by only 77% even at very high concentrations The most potent agonists, partial agonists, and pure antagonists had apparent affinities of about 5 μM. Although all positions were important for affinity at the adenosine receptor, only the 3′- and 5′-positions and to a much lesser extent the 6- and 8-positions had an effect on efficacy. The receptor tolerated bulky groups at the 6-position of adenosine, had an Et-sized pocket near the 5′-position, and had little bulk tolerance towards modifications at other positions. Among the full agonists, only one 5′-derivative and one 2-position derivative had higher apparent affinity than adenosine. Studies with conformationally restricted agonists and antagonists showed that adenosine must be in the anti conformation in order to bind to the receptor. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0HPLC of Formula: 13146-72-0).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.HPLC of Formula: 13146-72-0

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Svendsen, Karsten Ramlov et al. published their research in Cancer Chemotherapy and Pharmacology in 1992 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

Toxicity and metabolism of 3′-deoxyadenosine N1-oxide in mice and Ehrlich ascites tumor cells was written by Svendsen, Karsten Ramlov; Overgaard-Hansen, Kay; Frederiksen, Sune; Engelholm, Svend Aage; Pedersen, Niels Tinggaard; Vindelov, Lars Lindhardt. And the article was included in Cancer Chemotherapy and Pharmacology on June 30,1992.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol The following contents are mentioned in the article:

The toxic effect of 3′-deoxyadenosine N1-oxide (DANO) on mice, on their organs, and on Ehrlich ascites tumor cells was studied. In both healthy and tumor-bearing animals, the i.p. LD10 of DANO was about 300 mg/kg for 4 days in the Theiller mouse strain. In the NMRI strain, a markedly higher LD10 value (675 mg/kg for 5 days) was found. At nonlethal doses (250 mg/kg for 4 days), reversible neurol. symptoms were observed on days 4-12 after treatment, but no macroscopical or microscopical changes were detected in the brain, heart, thymus, lung, lymph nodes, spleen, liver, kidney, bone marrow, or gastrointestinal tract. At doses of 450 mg/kg for 4 days, severe neurol. symptoms, atony of the gastrointestinal canal, and damage to the kidney and liver were found. Even at doses that were lethal to mice, no histopathol. changes were observed in the bone marrow or in the gastrointestinal tract. After i.p. injection of DANO, the maximal blood plasma concentration was reached after 10 min, after which it declined showing a half-life of about 40 min. A transient accumulation of 3′-deoxyadenosine triphosphate (3′-dATP) was observed within 24 h in the liver and kidney, with the maximal concentration being reached after about 2-3 h. DANO was excreted partly as the unchanged substance and partly as 3′-deoxyinosine metabolite within 24 h. Flow-cytometric DNA anal. of Ehrlich tumor cells treated in vitro or in vivo with DANO revealed no therapy-induced perturbations of the cell cycle, which indicates that the cells were killed randomly during all phases of the cycle. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Morishige, Kazuhisa et al. published their research in Experimental Parasitology in 1995 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.COA of Formula: C10H12N4O4 

Leishmania donovani: pilot study for evaluation of therapeutic effects of inosine analogs against amastigotes in vitro and in vivo was written by Morishige, Kazuhisa; Aji, Toshiki; Ishii, Akira; Yasuda, Tatsuji; Wataya, Yusuke. And the article was included in Experimental Parasitology on June 30,1995.COA of Formula: C10H12N4O4  The following contents are mentioned in the article:

The inhibition by carbocyclic inosine (C-Ino), 3′-deoxyinosine (3′-dI), and 3′-deoxy-3′-fluoroinosine (3′-FI) of Leishmania donovani amastigotes was examined J774.1 cells (a mouse macrophage line) were cultured in GIT medium with lipopolysaccharide and hemin and infected with the parasite. C-Ino (3 μM) completely inhibited and 3′-dI (30 μM) reduced to 40% the infection rate on Day 6 after infection. The standard pentostam (30 μM) resulted in a 38% infection rate. The therapeutic efficacies of nonentrapped free and liposome-entrapped inosine analogs were tested in mice infected with L. donovani. The mice were injected i.v. five times on alternate days, beginning 2 days after infection. Treatment with the nonentrapped free inosine analog of C-Ino (100 mg/kg), 3′-dI (100 mg/kg), or 3′-FI (50 mg/kg) resulted in an LDU (Leishmania donovan units) that were 94, 68, or 73% lower, resp., than the control values. Treatment with the corresponding entrapped inosine analog (10 mg/kg) caused decreases of 90, 69, or 68% LDU, resp. The entrapped inosine analogs were inhibitory at doses one-fifth to one-tenth of the nonentrapped free inosine analogs. C-Ino had the strongest inhibitory effect among the three analogs tested in vitro and in vivo. Liposome-entrapped C-Ino had no severe side effects, although spleen weight increased. The agent may be useful as an antileishmanial drug. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0COA of Formula: C10H12N4O4 ).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.COA of Formula: C10H12N4O4 

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0