Minakawa, Noriaki et al. published their research in Chemical & Pharmaceutical Bulletin in 1996 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Reference of 13146-72-0

Nucleosides and nucleotides. 143. Synthesis of 5-amino-4-imidazolecarboxamide (AICA) deoxyribosides from deoxyinosines and their conversion into 3-deazapurine derivatives was written by Minakawa, Noriaki; Sasabuchi, Yoshimasa; Kiyosue, Arihiro; Kojima, Naoshi; Matsuda, Akira. And the article was included in Chemical & Pharmaceutical Bulletin on February 29,1996.Reference of 13146-72-0 The following contents are mentioned in the article:

An efficient and large scale chem. synthesis of 5-aminoimidazole-4-carboxamide (AICA) deoxyribonucleosides I (R = OH, R1 = H; R = H, R1 = OH) is described. Treatment of 3′,5′-di-O-acetyl-N1-triphenylmethyl-2′-deoxyinosine with 5 N NaOH in EtOH, followed by anhydrous trifluoroacetic acid gave I (R = OH, R1 = H) in 59% yield from 2′-deoxyinosine. AICA 3′-deoxyriboside I (R = H, R1 = OH) was also obtained in a similar manner in 73% yield from 3′-deoxyinosine. Conversion of I into 3-deazapurines, e.g. II, is also described. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Reference of 13146-72-0).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Reference of 13146-72-0

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Lougiakis, Nikolaos et al. published their research in Chemical & Pharmaceutical Bulletin in 2015 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.HPLC of Formula: 550-33-4

Synthesis of new nebularine analogues and their inhibitory activity against adenosine deaminase was written by Lougiakis, Nikolaos; Marakos, Panagiotis; Pouli, Nicole; Fragopoulou, Elisabeth; Tenta, Roxane. And the article was included in Chemical & Pharmaceutical Bulletin on February 28,2015.HPLC of Formula: 550-33-4 The following contents are mentioned in the article:

A number of new 2,6-disubstituted-1-deazanebularine analogs as well as two structurally related pyrazole-fused tricyclic nucleosides were prepared Their synthesis was carried out by the conversion of 6-amino-2-picoline to a suitable 1-deazapurine, followed by a Vorbruggen type glycosylation and subsequent elaboration of the condensed pyrazole ring. The synthesized nebularine analogs proved to be weak adenosine deaminase inhibitors. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4HPLC of Formula: 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.HPLC of Formula: 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Kowiel, Marcin et al. published their research in Nucleic Acids Research in 2020 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 550-33-4

Conformation-dependent restraints for polynucleotides: the sugar moiety was written by Kowiel, Marcin; Brzezinski, Dariusz; Gilski, Miroslaw; Jaskolski, Mariusz. And the article was included in Nucleic Acids Research on January 24,2020.Related Products of 550-33-4 The following contents are mentioned in the article:

Stereochem. restraints are commonly used to aid the refinement of macromol. structures obtained by exptl. methods at lower resolution The standard restraint library for nucleic acids has not been updated for over two decades and needs revision. In this paper, geometrical restraints for nucleic acids sugars are derived using information from high-resolution crystal structures in the Cambridge Structural Database. In contrast to the existing restraints, this work shows that different parts of the sugar moiety form groups of covalent geometry dependent on various chem. and conformational factors, such as the type of ribose or the attached nucleobase, and ring puckering or rotamers of the glycosidic (χ) or side-chain (γ) torsion angles. Moreover, the geometry of the glycosidic link and the endocyclic ribose bond angles are functionally dependent on χ and sugar pucker amplitude (τm), resp. The proposed restraints have been pos. validated against data from the Nucleic Acid Database, compared with an ultrahigh-resolution Z-DNA structure in the Protein Data Bank, and tested by rerefining hundreds of crystal structures in the Protein Data Bank. The conformation-dependent sugar restraints presented in this work are publicly available in REFMAC, PHENIX and SHELXL format through a dedicated RestraintLib web server with an API function. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Related Products of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Gillerman, Irina et al. published their research in Journal of Medicinal Chemistry in 2011 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Investigations into the Origin of the Molecular Recognition of Several Adenosine Deaminase Inhibitors was written by Gillerman, Irina; Fischer, Bilha. And the article was included in Journal of Medicinal Chemistry on January 13,2011.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Inhibitors of adenosine deaminase (ADA, EC 3.5.4.4) are potential therapeutic agents for the treatment of various health disorders. Several highly potent inhibitors were previously identified, yet they exhibit unacceptable toxicities. We performed a SAR study involving a series of C2 or C8 substituted purine-riboside analogs with a view to discover less potent inhibitors with a lesser toxicity. We found that any substitution at C8 position of nebularine resulted in total loss of activity toward calf intestinal ADA. However, several 2-substituted-adenosine, 8-aza-adenosine, and nebularine analogs exhibited inhibitory activity. Specifically, 2-Cl-purine riboside, 8-aza-2-thiohexyl adenosine, 2-thiohexyl adenosine, and 2-MeS-purine riboside were found to be competitive inhibitors of ADA with Ki values of 25, 22, 6, and 3 μM, resp. We concluded that electronic parameters are not major recognition determinants of ADA but rather steric parameters. A C2 substituent which fits ADA hydrophobic pocket and improves H-bonding with the enzyme makes a good inhibitor. In addition, a gg rotamer about C4′-C5′ bond is apparently an important recognition determinant. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Zhao, Xuan et al. published their research in Microbiological Research in 2019 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Computed Properties of C10H12N4O4 

Cordycepin and pentostatin biosynthesis gene identified through transcriptome and proteomics analysis of Cordyceps kyushuensis Kob was written by Zhao, Xuan; Zhang, Guoying; Li, Caiyi; Ling, Jianya. And the article was included in Microbiological Research on January 31,2019.Computed Properties of C10H12N4O4  The following contents are mentioned in the article:

Cordyceps kyushuensis is the only species of cordyceps growing on the larvae of Clanis bilineata Walker, and has been demonstrated that there are lots of pharmacol. components including cordycepin. Cordycepin shows lots of pharmacol. action but it could be converted to 3′-deoxyinosine by adenosine deaminase in vivo, which weakens the efficiency of cordycepin. That pentostatin, which has been reported to inhibit adenosine deaminase, combining cordycepin could enhance the efficiency of cordycepin in vivo. During transcriptome and proteomics anal. of Cordyceps kyushuensis, a single gene cluster including four genes we named ck1-ck4 which can synthesis both cordycepin and pentostatin has been identified using BLAST. Meanwhile, KEGG, KOG, GO anal. and differentially expressed genes were analyzed in transcriptome and proteomics. This study first sequenced transcriptome and proteomics of C. kyushuensis, and demonstrated that there is a single gene cluster related to biosynthesis of cordycepin and pentostatin, which can be employed to improve the yield of cordycepin and find more functional proteins. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Computed Properties of C10H12N4O4 ).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Computed Properties of C10H12N4O4 

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Kamran, Muhammad et al. published their research in Indo American Journal of Pharmaceutical Sciences in 2018 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Related Products of 550-33-4

Selective and non-selective activated and inhibitory agents effects on adenylyl cyclase in the kidney of the rats was written by Kamran, Muhammad; Butt, Awais; Nawaz, Shahzaib. And the article was included in Indo American Journal of Pharmaceutical Sciences in 2018.Related Products of 550-33-4 The following contents are mentioned in the article:

To have in depth knowledge about the effects of nonselective and selective inhibitory and activated agents on adenylyl cyclase in rat kidney. A variety of concentrations of pharmacol. agents were prepared They include nebularine, Ap3A, forskolin, Ap4A and caffeine. Furthermore, effects of these agents were noted in relation to rat kidney adenylyl activity. Tissue of rat kidney was used in the process of preparation of crude extract Activity of adenylyl cyclase in connection with crude extract was observed [2-H3] ATP was used as substrate which ultimately lead to the formation of cAMP. Pharmacol. agents with their prepared concentrations were tested. Prominent activator of adenylyl cyclase, forskolin, was selected as a compound Ap4A, caffeine, nebularine, and Ap3A were utilized for comparison purpose. Adenylyl cyclase activity was at peak at 100 M forskolin as per concluded results. Nebularine inhibited activity of enzyme when agent concentration enhanced up to 50 M where the inhibition started to stable. No considerable effect on the enzyme activity in kidney tissue was observed when caffeine with 10 – 300 M on the of adenylyl cyclase activity was used. No effect on adenylyl cyclase activity was noted when Ap3A over the concentration range of 10 – 300 M was used. However, an inhibition effect on the enzyme activity was noted when Ap4A with the concentration 100 M was used. Role of cyclic nucleotides in metabolism control and cell-signaling is undeniably significant. It stimulates inhibitors and activities of cyclase to make some likely physiol. impacts. Foreskin being initiator of adenylyl cyclase, Ap4A and nebularine are established to be latent inhibitors of cyclase, which signifies their importance in curing schizophrenia, mania, seizure, etc. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Related Products of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Related Products of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Kodama, E. N. et al. published their research in Biochemical Pharmacology in 1999 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 13146-72-0

Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells was written by Kodama, E. N.; McCaffrey, R. P.; Yusa, K.; Mitsuya, H.. And the article was included in Biochemical Pharmacology in 1999.Related Products of 13146-72-0 The following contents are mentioned in the article:

The nucleoside analog cordycepin (3′-deoxyadenosine, 3′-dA) is substantially more cytotoxic to terminal deoxynucleotidyl transferase pos. (TdT+) leukemic cells than to TdT- leukemic cells in vitro in the presence of an adenosine deaminase inhibitor, deoxycoformycin (dCF), and has been considered as a therapeutic agent for TdT+ leukemia. The intracellular metabolism of 3′-dA was examined with HPLC, and the mechanism of its anti-TdT+ leukemic activity was analyzed. In the presence of dCF (2.5 μM), TdT+ leukemic cells (N = 5) were sensitive to the cytotoxic effect of 3′-dA, whereas TdT- (N = 6) cells were not. A high level of 3′-dA-5′-triphosphate (3′-dATP) formation was detected in TdT+ NALM-6 cells (67 pmol/106 cells) and TdT- K562 cells (49 pmol/106 cells) when cultured with 1 μM [3′-3H]-labeled 3′-dA. A substantial level of 3′-dATP was detected in TdT- HUT-102 cells (27 pmol/106 cells), whereas the level of 3′-dATP in TdT+ MOLT-4 cells was low (0.3 pmol/106 cells). The mean IC50 values of 3′-dA against phytohemagglutinin (PHA)-activated and resting peripheral blood mononuclear cells (PBM) (N = 5) were 8 and 32 μM, resp. There was a modest level of 3′-dATP (7 pmol/106 cells) in PHA-PBM, whereas a lower level of 3′-dATP was detected in resting PBM (2.5 pmol/106 cells). These data suggest that the presence of 3′-dATP is not sufficient for the antileukemic effect of 3′-dA, but that TdT positivity is essential, and that PBM are significantly less sensitive to the cytotoxicity of 3′-dA in vitro. Further development of 3′-dA as a potential antileukemic agent to treat patients with TdT+ leukemia is warranted. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Related Products of 13146-72-0).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Related Products of 13146-72-0

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Swain, Monalisa et al. published their research in Nucleic Acids Research in 2021 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C10H12N4O4  

Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands was written by Swain, Monalisa; Ageeli, Abeer A.; Kasprzak, Wojciech K.; Li, Mi; Miller, Jennifer T.; Solinska, Joanna Sztuba; Schneekloth, John S.; Koirala, Deepak; Piccirili, Joseph; Fraboni, Americo J.; Murelli, Ryan P.; Wlodawer, Alexander; Shapiro, Bruce A.; Baird, Nathan; Le Grice, Stuart F. J.. And the article was included in Nucleic Acids Research in 2021.Synthetic Route of C10H12N4O4   The following contents are mentioned in the article:

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biol. and pathol. processes. Several lncRNAs sequester their 3 termini to evade cellular degradation machinery, thereby supporting disease progression. An intramol. triplex involving the lncRNA 3 terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi′s sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small mols. and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophys., biochem., and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small mols. that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small mols. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Synthetic Route of C10H12N4O4  ).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C10H12N4O4  

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Hu, Ping et al. published their research in Food & Function in 2021 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Metabolomic profiling reveals the effects of early-life lactoferrin intervention on protein synthesis, energy production and antioxidative capacity in the liver of suckling piglets was written by Hu, Ping; Zhao, Fangzhou; Wang, Jing; Zhu, Weiyun. And the article was included in Food & Function in 2021.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

This study aimed to determine the effects of an early-life lactoferrin (LF) intervention on liver metabolism in suckling piglets. Sixty newborn piglets with an average initial body weight (BW) of 1.51 ± 0.05 kg were assigned to a control (CON) group and an LF group. At age 1 to 7 days, the piglets in the LF group were orally administered LF solution (0.5 g per kg BW daily), whereas the piglets in the CON group were orally administered the same dose of physiol. saline. Plasma, jejunum and liver samples were collected on days 8 and 21. The LF piglets showed a decreased plasma urea nitrogen level on day 8 and an increased plasma albumin level on day 21. Pathway anal. of the metabolomic profiles showed that the LF treatment affected amino acid metabolism in the liver. In addition, the LF treatment upregulated the gene expression levels of proteolytic enzymes and amino acid transporters (APA, APN, EAAC1, Pept1, CAT1, B0AT1 and ASCT2) in the jejunum, and it enhanced the phosphorylation levels of mTOR and p70S6K in the liver. The LF treatment also upregulated the expression of a β-oxidation-related gene (CPT1) and affected the tricarboxylic acid cycle in the liver on day 21. Furthermore, the LF piglets showed a decreased level of malondialdehyde and increased levels of GSH, GSH-Px and GCLC in the liver mitochondria. Overall, the early-life LF intervention affected the protein synthesis, energy production and antioxidative capacity in the liver of the neonatal piglets. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Application In Synthesis of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Gong, Liang et al. published their research in Virulence in 2020 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Electric Literature of C10H12N4O4  

New insights into the evolution of host specificity of three Penicillium species and the pathogenicity of P. Italicum involving the infection of Valencia orange (Citrus sinensis) was written by Gong, Liang; Liu, Yongfeng; Xiong, Yehui; Li, Taotao; Yin, Chunxiao; Zhao, Juanni; Yu, Jialin; Yin, Qi; Gupta, Vijai Kumar; Jiang, Yueming; Duan, Xuewu. And the article was included in Virulence in 2020.Electric Literature of C10H12N4O4   The following contents are mentioned in the article:

Blue and green molds, the common phenotypes of post-harvest diseases in fruits, are mainly caused by Penicillium fungal species, including P. italicum, P. digitatum, and P. expansum. We sequenced and assembled the genome of a P. italicum strain, which contains 31,034,623 bp with 361 scaffolds and 627 contigs. A dual-transcriptome anal. following the infection of Valencia orange (Citrus sinensis) by P. italicum resulted in the annotation of 9,307 P. italicum genes and 24,591 Valencia orange genes. The pathogenicity of P. italicum may be due to the activation of effectors, including 51 small secreted cysteine-rich proteins, 110 carbohydrate-active enzymes, and 12 G protein-coupled receptors. Addnl., 211 metabolites related to the interactions between P. italicum and Valencia orange were identified by gas chromatog.-time of flight mass spectrog., three of which were further confirmed by ultra-high performance liquid chromatog. triple quadrupole mass spectrometry. Moreover, a correlation anal. between the metabolite contents and gene expression levels suggested that P. italicum induces carbohydrate metabolism in Valencia orange fruits as part of its infection strategy. This study provides useful information regarding the genomic determinants that drive the evolution of host specificity in Penicillium species and clarifies the host-plant specificity during the infection of Valencia orange by P. italicum. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Electric Literature of C10H12N4O4  ).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Electric Literature of C10H12N4O4  

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4