Montgomery, John A. et al. published their research in Journal of Medicinal Chemistry in 1975 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

Nucleosides of 2-azapurines. 7H-Imidazo[4,5-d]-1,2,3-triazines. 2 was written by Montgomery, John A.; Laseter, Anne G.; Shortnacy, Anita T.; Clayton, Sarah J.; Thomas, H. Jeanette. And the article was included in Journal of Medicinal Chemistry in 1975.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol The following contents are mentioned in the article:

A series of 7 title compounds, prepared by enzymic deamination of 2-azaadenine nucleosides or ring cleavage of hypoxanthine nucleosides followed by nitrosative ring closure to the 2-azahypoxanthine nucleosides, were tested in cultures of human epidermoid carcinoma Number 2 cells and sublines. 2-Azaadenosine (I) [146-94-1] was active against all cell lines except those lacking both adenosine kinase and hypoxanthine-guanine phosphoribosyltransferase. The 2-azaadenine nucleosides could be metabolized to the cytotoxic nucleotides by 2 pathways, but the 2-azahypoxanthine nucleosides activity resulted from cleavage to 2-azahypoxanthine. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Wataya, Y. et al. published their research in Nucleic Acids Symposium Series in 1984 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.COA of Formula: C10H12N4O4 

Anti-parasite activity of nucleoside analogs in Leishmania tropica promastigotes was written by Wataya, Y.; Hiraoka, O.; Sonobe, Y.; Yoshioka, A.; Matsuda, A.; Miyasaka, T.; Saneyoshi, M.; Ueda, T.. And the article was included in Nucleic Acids Symposium Series in 1984.COA of Formula: C10H12N4O4  The following contents are mentioned in the article:

Many nucleoside analogs were screened for antiprotozoal activity on L. tropica in an in vitro culture system. 3′-Deoxyinosine and several tubercidin derivatives were potent inhibitors for growth of the promastigote form of L. tropica. This compound was markedly less toxic towards mouse mammary tumor FM3A cells. 3′-Deoxyinosine is metabolized by Leishmania promastigote to give 3′-deoxyinosine-5′-monophosphate and 3′-deoxyadenosine(cordycepin)-5′-mono, di-, and triphosphates. This means that Leishmania can aminate the 6-position of 3′-deoxyinosine-5′-monophosphate, thereby converting it into a highly toxic compound This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0COA of Formula: C10H12N4O4 ).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.COA of Formula: C10H12N4O4 

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Xia, Ran et al. published their research in Phosphorus, Sulfur and Silicon and the Related Elements in 2017 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Formula: C10H12N4O4  

The synthesis of nebularine and its analogs via oxidative desulfuration in aqueous nitric acid was written by Xia, Ran; Sun, Li-Ping; Qu, Gui-Rong. And the article was included in Phosphorus, Sulfur and Silicon and the Related Elements in 2017.Formula: C10H12N4O4   The following contents are mentioned in the article:

The synthesis of nebularine and its analogs has been achieved via oxidative desulfuration in H2O for the first time. With 50% HNO3 as an oxidant and solvent, 18 products were obtained in good yields (70%-94%). The oxidative desulfuration system could tolerate different functional groups including fluoro, chloro, amino, alkyl, allyl, ribosyl, deoxyribosyl, and arabinofuranosyl groups. More importantly, the drug nebularine could be obtained successfully on a 20 g scale, which made this route more attractive for industrial applications. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Formula: C10H12N4O4  ).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Formula: C10H12N4O4  

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Shigeura, Harold T. et al. published their research in Biochimica et Biophysica Acta, Nucleic Acids and Protein Synthesis in 1967 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 13146-72-0

Utilization of 6-methylamino-9-(3′-deoxy-β-D-ribofuranosyl) purine by KB cells was written by Shigeura, Harold T.; Sampson, Susan D.. And the article was included in Biochimica et Biophysica Acta, Nucleic Acids and Protein Synthesis in 1967.HPLC of Formula: 13146-72-0 The following contents are mentioned in the article:

The metabolism of 6-methylamino-9-(3′-deoxy-β-D-ribofuranosyl) purine by KB cells was investigated. The nucleoside was not directly cleaved to the methylated base but instead was slowly demethylated to 3′-deoxyadenosine which metabolized further via 2 sep. pathways: (1) it was converted to 3′-deoxyadenosine 5′-triphosphate and incorporated into RNA, and (2) alternatively, it was catabolized to 3′-deoxyinosine and to hypoxanthine. 16 references. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0HPLC of Formula: 13146-72-0).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 13146-72-0

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Xia, Ran et al. published their research in Green Chemistry in 2014 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 550-33-4

Efficient synthesis of nebularine and vidarabine via dehydrazination of (hetero)aromatics catalyzed by CuSO4 in water was written by Xia, Ran; Xie, Ming-Sheng; Niu, Hong-Ying; Qu, Gui-Rong; Guo, Hai-Ming. And the article was included in Green Chemistry in 2014.Reference of 550-33-4 The following contents are mentioned in the article:

A simple dehydrazination reaction has been achieved in the presence of a catalytic amount of CuSO4 for the first time. With CuSO4 (2 mol%) as a catalyst and water as a solvent, the dehydrazination products were obtained in good yields (66-95%). Moreover, the drugs nebularine and vidarabine were afforded successfully, and vidarabine could be produced on a 0.923 kg scale, which shows good potential for industrial applications. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Reference of 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Reference of 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Haga, Kazuko et al. published their research in Bulletin of the Chemical Society of Japan in 1970 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Synthetic Route of C10H12N4O4 

Preparation of halonucleosides was written by Haga, Kazuko; Yoshikawa, Masaharu; Kato, Tetsuya. And the article was included in Bulletin of the Chemical Society of Japan in 1970.Synthetic Route of C10H12N4O4  The following contents are mentioned in the article:

5′-Chloro- (I), 5′-bromo- (II), and 5′-deoxy-5′-iodo-2′,3′-O-isopropylideneinosine (III) are prepared by the treatment of 2′,3′-O-isopropylideneinosine, in (EtO)3PO containing Ph3P, with CCl4, Br, BrCN, and iodine. Similarly, 5′-O-acetylinosine gives 9-(3-chloro-3-deoxy-β-D-xylofuranosyl)-hypoxanthine (IV). I, II, and III are not obtained when the (EtO)3PO is replaced by DMF. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Synthetic Route of C10H12N4O4 ).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Synthetic Route of C10H12N4O4 

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Vylicilova, Hana et al. published their research in Phytochemistry (Elsevier) in 2016 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Category: tetrahydrofurans

C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus was written by Vylicilova, Hana; Husickova, Alexandra; Spichal, Lukas; Srovnal, Josef; Dolezal, Karel; Plihal, Ondrej; Plihalova, Lucie. And the article was included in Phytochemistry (Elsevier) on February 29,2016.Category: tetrahydrofurans The following contents are mentioned in the article:

Cytokinins are plant hormones with biol. functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N6-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in detached wheat leaf senescence, tobacco callus and Amaranthus bioassays. The synthetic compounds showed significant activity, especially in delaying senescence in detached wheat leaves. They were also tested in bacterial receptor bioassays using both monocot and dicot members of the cytokinin receptor family. Most of the derivatives did not trigger cytokinin signaling via the AHK3 and AHK4 receptors from Arabidopsis thaliana in the bacterial assay, but some of them specifically activated the ZmHK1 receptor from Zea mays and were also more active than the aromatic cytokinin BAP in an ARR5::GUS cytokinin bioassay using transgenic Arabidopsis plants. Whole transcript expression anal. was performed using an Arabidopsis model to gather information about the reprogramming of gene transcription when senescent leaves were treated with selected C2-substituted aromatic cytokinin ribosides. Genome-wide expression profiling revealed that the synthetic halogenated derivatives induced the expression of genes related to cytokinin signaling and metabolism They also prompted both up- and down-regulation of a unique combination of genes coding for components of the photosystem II (PSII) reaction center, light-harvesting complex II (LHCII), and the oxygen-evolving complex, as well as several stress factors responsible for regulating photosynthesis and chlorophyll degradation Chlorophyll content and fluorescence analyses demonstrated that treatment with the halogenated derivatives increased the efficiency of PSII photochem. and the abundance of LHCII relative to DMSO- and BAP-treated controls. These findings demonstrate that it is possible to manipulate and fine-tune leaf longevity using synthetic aromatic cytokinin analogs. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Category: tetrahydrofurans).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Category: tetrahydrofurans

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Arendt, Cassandra S. et al. published their research in Journal of Biological Chemistry in 2010 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Name: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Role of Transmembrane Domain 4 in Ligand Permeation by Crithidia fasciculata Equilibrative Nucleoside Transporter 2 (CfNT2) was written by Arendt, Cassandra S.; Ullman, Buddy. And the article was included in Journal of Biological Chemistry on February 26,2010.Name: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Equilibrative nucleoside transporters play essential roles in nutrient uptake, cardiovascular and renal function, and purine analog drug chemotherapies. Limited structural information is available for this family of transporters; however, residues in transmembrane domains 1, 2, 4, and 5 appear to be important for ligand and inhibitor binding. In order to identify regions of the transporter that are important for ligand specificity, a genetic selection for mutants of the inosine-guanosine-specific Crithidia fasciculata nucleoside transporter 2 (CfNT2) that had gained the ability to transport adenosine was carried out in the yeast Saccharomyces cerevisiae. Nearly all pos. clones from the genetic selection carried mutations at lysine 155 in transmembrane domain 4, highlighting lysine 155 as a pivotal residue governing the ligand specificity of CfNT2. Mutation of lysine 155 to asparagine conferred affinity for adenosine on the mutant transporter at the expense of inosine and guanosine affinity due to weakened contacts to the purine ring of the ligand. Following systematic cysteine-scanning mutagenesis, thiol-specific modification of several positions within transmembrane domain 4 was found to interfere with inosine transport capability, indicating that this helix lines the water-filled ligand translocation channel. Addnl., the pattern of modification of transmembrane domain 4 suggested that it may deviate from helicity in the vicinity of residue 155. Position 155 was also protected from modification in the presence of ligand, suggesting that lysine 155 is in or near the ligand binding site. Transmembrane domain 4 and particularly lysine 155 appear to play key roles in ligand discrimination and translocation by CfNT2. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Name: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Name: (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Hulpia, Fabian et al. published their research in European Journal of Medicinal Chemistry in 2020 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Safety of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

C6-O-alkylated 7-deazainosine nucleoside analogs: Discovery of potent and selective anti-sleeping sickness agents was written by Hulpia, Fabian; Bouton, Jakob; Campagnaro, Gustavo D.; Alfayez, Ibrahim A.; Mabille, Dorien; Maes, Louis; de Koning, Harry P.; Caljon, Guy; Van Calenbergh, Serge. And the article was included in European Journal of Medicinal Chemistry on February 15,2020.Safety of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol The following contents are mentioned in the article:

African trypanosomiasis, a deadly infectious disease caused by the protozoan Trypanosoma brucei spp., is spread to new hosts by bites of infected tsetse flies. Currently approved therapies all have their specific drawbacks, prompting a search for novel therapeutic agents. T. brucei lacks the enzymes necessary to forge the purine ring from amino acid precursors, rendering them dependent on the uptake and interconversion of host purines. This dependency renders analogs of purines and corresponding nucleosides an interesting source of potential anti-T. brucei agents. In this study, we synthesized and evaluated a series of 7-substituted 7-deazainosine derivatives and found that 6-O-alkylated analogs in particular showed highly promising in vitro activity with EC50 values in the mid-nanomolar range. SAR investigation of the O-alkyl chain showed that antitrypanosomal activity increased, and also cytotoxicity, with alkyl chain length, at least in the linear alkyl chain series. However, this could be attenuated by introducing a terminal branch point, resulting in the highly potent and selective analogs,, e.g. I. No resistance related to transporter-mediated uptake could be identified, earmarking several of these analogs for further in vivo follow-up studies. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Safety of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Safety of 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Svendsen, Karsten Ramloev et al. published their research in Cancer Chemotherapy and Pharmacology in 1988 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Product Details of 13146-72-0

Synergistic effect of 3′-deoxyadenosine N1-oxide and adenosine deaminase inhibitors on growth of Ehrlich ascites tumor cells in vivo was written by Svendsen, Karsten Ramloev; Overgaard-Hansen, Kay; Frederiksen, Sune. And the article was included in Cancer Chemotherapy and Pharmacology on February 29,1988.Product Details of 13146-72-0 The following contents are mentioned in the article:

The simultaneous administration of 3′-deoxyadenosine N’-oxide (3′-dANO) and the adenosine deaminase inhibitors erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) or 2′-deoxycoformycin (2′-dCF) to mice bearing Ehrlich ascites tumor cells resistant to 3′-dANO resulted in 80%-90% inhibition of tumor growth in vivo. 3′-DANO and 2′-dCF increased the survival time of tumor-bearing mice by a factor of 2. In vitro studies showed that the 3′-dANO resistant Ehrlich cells initiate the metabolism of 3′-dANO by a reduction to 3′-deoxyadenosine, which is converted primarily to 3′-deoxyinosine by adenosine deaminase and, to a small extent, phosphorylated to the cell toxic agent 3′-dATP. By the addition of EHNA or 2′-dCF, it was possible to block the formation of 3′-deoxyinosine; this stimulated the accumulation of 3′-dATP. Resistance to 3′-dANO in cell cultures was accompanied by changes in the following enzyme activities: reductase, adenosine kinase, and the adenosine deaminase. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Product Details of 13146-72-0).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Product Details of 13146-72-0

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0