Ni, Jixiang’s team published research in Chemistry – An Asian Journal in 2019 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Category: tetrahydrofurans

In 2019,Chemistry – An Asian Journal included an article by Ni, Jixiang; Jiang, Yong; Qi, Zhenjie; Yan, Rulong. Category: tetrahydrofurans. The article was titled 《TFAA-Catalyzed Annulation Synthesis of Spiro Pyrrolo[1,2-a]quinoxaline Derivatives from 1-(2-Aminophenyl)pyrroles and Benzoquinones/Ketones》. The information in the text is summarized as follows:

A metal-free trifluorosulfonate anhydride (TFAA)-catalyzed strategy for the synthesis of spiro pyrrolo[1,2-a]quinoxalines from 1-(2-aminophenyl)pyrroles and benzoquinones/ketones was developed. With this general method, spiro pyrrolo[1,2-a]quinoxalines were accessed via nucleophilic addition and cyclization. This reaction exhibited good functional group tolerance and a wide range of products were obtained in moderate to good yields. The results came from multiple reactions, including the reaction of 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Category: tetrahydrofurans)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kawamata, Yuki’s team published research in Industrial Crops and Products in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Application of 19444-84-9

Kawamata, Yuki; Yoshikawa, Takuya; Koyama, Yoshihito; Ishimaru, Hiroya; Ohtsuki, Satoru; Fumoto, Eri; Sato, Shinya; Nakasaka, Yuta; Masuda, Takao published an article on January 31 ,2021. The article was titled 《Uniqueness of biphasic organosolv treatment of soft- and hardwood using water/1-butanol co-solvent》, and you may find the article in Industrial Crops and Products.Application of 19444-84-9 The information in the text is summarized as follows:

Biphasic organosolv treatment for soft- and hardwood using water/1-butanol was unique based on the correlation between liquid-phase states and solubility of the co-solvents when compared with a monophasic water/ethanol system. First, Pro II process simulator showed that water/1-butanol exhibited a biphasic system in the range of 1.6-19.0 mol/mol at a treatment temperature of 473 K. In addition, solubility of the co-solvents was evaluated using the Hildebrand solubility parameter (δ), which indicated that the biphasic system could simultaneously provide 28.5 and 42.0 MPa1/2 for the 1-butanol and water phase, resp. Each δ value appeared appropriate for lignin and hemicellulose dissolution because they were similar to those reported for lignin and a typical sugar. While hemicellulose could be removed by increasing water content in an organosolv of Japanese cedar sawdust, high lignin removal was achieved only under biphasic conditions. Carbon yield of each fraction (solid, 1-butanol-, and water-soluble fraction) and Py-GC/MS anal. revealed that lignin and hemicellulose could be recovered in the 1-butanol and water fractions, resp. The organosolv using Japanese cedar and willow was compared to the results when using monophasic water/ethanol. The results indicated that the co-solvent could not efficiently remove hemicellulose and lignin simultaneously because the monophasic system did not produce the level of solubility needed under the same conditions. In contrast, the biphasic water/1-butanol system achieved greater removal of hemicellulose and lignin compared to water/ethanol. The biphasic system was also applicable to separation of an industrial agricultural waste; sugarcane bagasse. Finally, the 2D-NMR spectra of 1-butanol-soluble lignin showed a trace amount of β-O-4 linkages in the lignin, indicating β-O-4 was cleaved via hydrolysis in the water phase during biphasic treatment. After reading the article, we found that the author used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Application of 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Application of 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Qingyin’s team published research in Science of the Total Environment in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 19444-84-9

Recommanded Product: 19444-84-9On October 15, 2021 ,《Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products》 was published in Science of the Total Environment. The article was written by Li, Qingyin; Lin, Haisheng; Zhang, Shu; Yuan, Xiangzhou; Gholizadeh, Mortaza; Wang, Yi; Xiang, Jun; Hu, Song; Hu, Xun. The article contains the following contents:

Co-hydrothermal carbonization (HTC) of livestock manure and biomass might improve the fuel properties of the hydrochar due to the high reactivity of the biomass-derived intermediates with the abundant oxygen-containing functionalities. However, the complicated compositions make it difficult to explicit the specific roles of the individual components of biomass played in the co-HTC process. In this study, cellulose was used for co-HTC with swine manure to investigate the influence on the properties of the hydrochar. The yield of hydrochar obtained from co-HTC reduced gradually with the cellulose proportion increased, and the solid yield was lower than the theor. value. This was because the cellulose-derived intermediates favored the stability of the fragments from hydrolysis of swine manure. The increased temperature resulted in the reduction of the hydrochar yield whereas the prolonged time enhanced the formation of solid product. The interaction of the co-HTC intermediates facilitated the formation of O-containing species, thus making the solid more oxygen- and hydrogen-rich with a higher volatility. In addition, the co-HTC affected the evolution of functionalities like -OH and C=O during the thermal treatment of the hydrochar and altered its morphol. by stuffing the pores from swine manure-derived solid with the microspheres from HTC of cellulose. The interaction of the varied intermediates also impacted the formation of amines, ketones, carboxylic acids, esters, aromatics and the polymeric products in distinct ways. The experimental process involved the reaction of 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Recommanded Product: 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Qingyin’s team published research in Science of the Total Environment in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Application of 19444-84-9

Application of 19444-84-9On September 10, 2021 ,《Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics》 was published in Science of the Total Environment. The article was written by Li, Qingyin; Zhang, Shu; Gholizadeh, Mortaza; Hu, Xun; Yuan, Xiangzhou; Sarkar, Binoy; Vithanage, Meththika; Masek, Ondrej; Ok, Yong Sik. The article contains the following contents:

Swine and chicken manures are abundant solid wastes that can be converted into carbonaceous materials through hydrothermal carbonization (HTC). Owing to their unique biochem. compositions, co-HTC of these two types of manures may have significant implications for the generated products. We investigated the co-HTC of swine manure and chicken manure to understand the influence of the interaction between contrasting manures on the properties of the derived products. The results indicated that co-HTC treatment enhanced the formation of solid product and improved the C and N contents, heating value, and energy yield of the resulting hydrochar. Regarding the ignition temperature and comprehensive combustion index, the combustion properties of the hydrochar were enhanced owing to the mutual effect of the HTC intermediates. Addnl., the interaction of the intermediates significantly impacted the transfer of nitrogenous species and generation of organic acids and organic polymers with fused-ring structures. Therefore, co-HTC processing of animal manures could potentially provide a sustainable pathway for the conversion of animal waste into solid products with improved characteristics compared to those produced by treating the two feedstocks sep. After reading the article, we found that the author used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Application of 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Application of 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wang, Xing’s team published research in Analyst (Cambridge, United Kingdom) in 2020 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.HPLC of Formula: 696-59-3

HPLC of Formula: 696-59-3In 2020 ,《A pro-gastrin-releasing peptide imprinted photoelectrochemical sensor based on the in situ growth of gold nanoparticles on a MoS2 nanosheet surface》 appeared in Analyst (Cambridge, United Kingdom). The author of the article were Wang, Xing; Deng, Hongping; Wang, Chen; Wei, Qiuxi; Wang, Yanying; Xiong, Xiaoxing; Li, Chunya; Li, Wenwen. The article conveys some information:

Lamellar MoS2 nanosheets were successfully prepared by hydrothermal synthesis using 1-(3-mercaptopropyl)-3-methyl-imidazolium bromine (MIMBr) ionic liquid as a sulfur source and a morphol. control agent, and sodium molybdate as a molybdenum source. Gold nanoparticles were assembled on the surface of MoS2 nanosheets by the in situ reduction of chloroauric acid at low temperatures to successfully fabricate AuNP/2D-MoS2 nanocomposites, thus improving photoelectrochem. response. AuNP/2D-MoS2 nanocomposites were used as photoelec. active materials modified onto a glassy carbon electrode surface to construct a photoelectrochem. (PEC) sensor. Then, using 1-(N-pyrrolpropyl)-3-methyl-imidazolium bromine (PMIMBr) ionic liquid as a functional monomer and pro-gastrin-releasing peptide (Pro-GRP) as a template, a molecularly imprinted polymerized ionic liquid film was electrochem. deposited on an AuNP/2D-MoS2/GCE surface. Upon removing the templates, a molecularly imprinted photoelectrochem. sensor was constructed for the sensing of a tumor marker, pro-gastrin-releasing peptide. Exptl. conditions including ascorbic acid concentration, polymerization conditions, incubation time, and pH value of the incubation solution have been optimized. Under the optimized conditions, the molecularly imprinted photoelectrochem. sensor can specifically detect the target protein Pro-GRP in the range of 0.02 ng mL-1-5 ng mL-1 with a detection limit of 0.0032 ng mL-1 (S/N = 3). The practicability of this photoelectrochem. sensor was demonstrated by accurately determining Pro-GRP in human serum samples. In addition to this study using 2,5-Dimethoxytetrahydrofuran, there are many other studies that have used 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3HPLC of Formula: 696-59-3) was used in this study.

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.HPLC of Formula: 696-59-3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Torres-Pacheco, Luis J.’s team published research in Electrochimica Acta in 2020 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Name: 3-Hydroxydihydrofuran-2(3H)-one

Name: 3-Hydroxydihydrofuran-2(3H)-oneOn September 1, 2020 ,《Sorbitol electro-oxidation reaction on sub<10 nm PtAu bimetallic nanoparticles》 was published in Electrochimica Acta. The article was written by Torres-Pacheco, Luis J.; De Leon-Rodriguez, Antonio; Alvarez-Contreras, Lorena; Guerra-Balcazar, Minerva; Arjona, Noe. The article contains the following contents: Sorbitol is a highly available and functionalized polyalc., with vast industrial usages and with great potential for fuel cells application. However, few studies were done regarding its electrochem. oxidation Monometallic Au, Pt and PtAu with different compositions from Pt-rich (such as Pt85Au15) to Au-rich (Pt10Au90) nanomaterials were synthesized. Several parameters like sorbitol and KOH concentration, scan rate, charge-transfer resistance, and temperature were tested. According with the physicochem. characterization, average particle sizes from 5.6 to 6.5 nm were found for all electrocatalysts, while Pt at. percentages of 85, 60, 40, and 10% were obtained. XPS revealed shifts in Pt 4f and Au 4f core-levels related to electron d. changes by the interaction between these elements and as a result, the electrocatalytic properties for the sorbitol electrooxidation reaction (SOR) were modified. The PtAu nanomaterials presented an increase of the c.d. with the raise of the KOH and sorbitol concentrations, being Pt40Au60/C the most active electrocatalyst displaying 40 mA mg-1 at 0.1M sorbitol in 2 M KOH with an onset potential of -0.50 V vs. normal H electrode. This onset potential value was more neg. to that typically reported for other polyols like glycerol and ethylene glycol. The reaction pathway of Pt/C, Au/C and Pt40Au60/C was followed by chromatog. and spectroscopic techniques, finding that the complex surfaces of these electrocatalysts were capable to carry the SOR via several electrons (from 2 to 24 e-). In this manner, the high electrocatalytic activity of Pt40Au60/C was attributed to the electron d. changes that promote a higher electron transfer forming shorter-chain byproducts. In the part of experimental materials, we found many familiar compounds, such as 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Name: 3-Hydroxydihydrofuran-2(3H)-one)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Name: 3-Hydroxydihydrofuran-2(3H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ibrahim, Dhuaou’s team published research in European Journal of Organic Chemistry in 2021 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Application of 696-59-3

Ibrahim, Dhuaou; Boulet, Pascal; Gros, Philippe C.; Pierrat, Philippe published their research in European Journal of Organic Chemistry in 2021. The article was titled 《Efficient Access to Arylated Aza-ullazines by Regioselective Functionalization of their Pyridine Ring by H-Li Exchange and Electrophilic Substitution》.Application of 696-59-3 The article contains the following contents:

The regioselective functionalization of aza-ullazines had been successfully realized for the first time by either metalation using BuLi-containing aggregates (BuLi-LiDMAE) or electrophilic substitution. Mono and di-bromo-derivatives were obtained in good to excellent yields and further successfully converted into aryl-azaullazines I [R = H, Ph; Ar = Ph, 4-CHOC6H4, 6-chloro-3-pyridyl, 5-formyl-2-thienyl] and alkynyl-azaullazines II [R1 = H, CCPh; Ar1 = Ph, 4-Bu2NC6H4] by Suzuki and Sonogashira cross-coupling reactions. The experimental part of the paper was very detailed, including the reaction process of 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Application of 696-59-3)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Application of 696-59-3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Pozharskii, Alexander F.’s team published research in Journal of Organic Chemistry in 2019 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Category: tetrahydrofurans

The author of 《Neutral Pyrrole Nitrogen Atom as a π- and Mixed n,π-Donor in Hydrogen Bonding》 were Pozharskii, Alexander F.; Ozeryanskii, Valery A.; Filatova, Ekaterina A.; Dyablo, Olga V.; Pogosova, Olga G.; Borodkin, Gennady S.; Filarowski, Aleksander; Steglenko, Dmitriy V.. And the article was published in Journal of Organic Chemistry in 2019. Category: tetrahydrofurans The author mentioned the following in the article:

9-Dimethylaminobenzo[g]indoles I [R1, R2 given:H,H (3);4-MeC6H4,Me(4);4-O2NC6H4,Me(5);H, CF3(6)] and 1-dimethylamino-8-(pyrrolyl-1)naphthalene 7 were examined as possible models for establishing the ability of the pyrrole nitrogen atom to participate in [NHN]+ hydrogen bonding as a proton acceptor. Indoles 3-5 (to a lesser extent 6) form rather stable tetrafluoroborates, with the proton mostly located on the NMe2 group but simultaneously engaged in the formation of a charged intramol. [NHN]+ hydrogen bond (IHB) with the pyrrole N atom. The theor. estimated energies of IHB in salts 3H+BF4–6H+BF4- vary between 7.0-10.7 and 6.2-7.0 kcal mol-1 in vapor and MeCN, resp. The pyrrole N atom undergoes a perceptible pyramidalization but still remains involved in the 6π-electron aromatic system, suggesting that the hydrogen bonding in salts 3H+BF4–6H+BF4- represents a previously unknown mixed NH···N(n,π) interaction. Despite the favorable orientation of the N-H bond and the pyrrole ring in salt 7H+BF4-, no signs of NH···N(n) bonding in it were noticed, and the existing interaction was classified as pure NH···N(π). The results obtained may be useful in studies of secondary protein structures, especially those α-helix sections which contain tryptophan residues. The experimental part of the paper was very detailed, including the reaction process of 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Category: tetrahydrofurans)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Alvi, Shakeel’s team published research in Beilstein Journal of Organic Chemistry in 2021 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Electric Literature of C6H12O3

《Design, synthesis and photophysical properties of novel star-shaped truxene-based heterocycles utilizing ring-closing metathesis, Clauson-Kaas, Van Leusen and Ullmann-type reactions as key tools》 was written by Alvi, Shakeel; Ali, Rashid. Electric Literature of C6H12O3This research focused ontruxene preparation; Clauson–Kaas reaction; Ullmann-type coupling; Van Leusen reaction; heterocycles; ring-closing metathesis; truxene. The article conveys some information:

Herein, three novel distinctly different routes for the generation of C3-sym. pyrrole-based truxene architectures I [R = NH2, 4-CHOC6H4, pyrrol-1-yl, etc.] by means of cyclotrimerization, ring-closing metathesis (RCM), Clauson-Kaas and Ullmann-type coupling reactions as key steps was revealed. Moreover, some other interesting heterocyclic systems possessing oxazole, imidazole, benzimidazole and benzoxazole in the framework of truxene were also assembled. Addnl., the preliminary photophys. properties (absorption and emission) for these versatile systems was revealed. After reading the article, we found that the author used 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Electric Literature of C6H12O3)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Electric Literature of C6H12O3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wang, Long’s team published research in Journal of the American Chemical Society in 2020 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Electric Literature of C6H12O3

Electric Literature of C6H12O3In 2020 ,《Singlet Fission in a Pyrrole-Fused Cross-Conjugated Skeleton with Adaptive Aromaticity》 was published in Journal of the American Chemical Society. The article was written by Wang, Long; Lin, Lu; Yang, Jingjing; Wu, Yishi; Wang, Hua; Zhu, Jun; Yao, Jiannian; Fu, Hongbing. The article contains the following contents:

Singlet fission (SF) materials hold the potential to increase the power conversion efficiency of solar cells by reducing the thermalization of high-energy excited states. The major hurdle in realizing this potential is the limited scope of SF-active materials with high fission efficiency, suitable energy levels, and sufficient chem. stability. Herein, using theor. calculation and time-resolved spectroscopy, a highly stable SF material is developed on dipyrrolonaphthyridinedione (DPND), a pyrrole-fused cross-conjugated skeleton with a distinctive adaptive aromaticity (dual aromaticity) character. The embedded pyrrole ring with 4n + 2 π-electron features aromaticity in the ground state, while the dipole resonance of the amide bonds promotes a 4n π-electron Baird’s aromaticity in the triplet state. Such an adaptive aromaticity renders the mol. efficient for the SF process [E(S1) ≥ 2E(T1)] without compromising its stability. Up to 173% triplet yield, strong blue-green light absorption, and suitable triplet energy of 1.2 eV, as well as excellent stability, make DPND a promising SF sensitizer toward practical applications.2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Electric Literature of C6H12O3) was used in this study.

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Electric Literature of C6H12O3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem