Jensen, Pernille R.’s team published research in ACS Sustainable Chemistry & Engineering in 8 | CAS: 19444-84-9

ACS Sustainable Chemistry & Engineering published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Synthetic Route of 19444-84-9.

Jensen, Pernille R. published the artcileVisualization of Pathway Usage in an Extended Carbohydrate Conversion Network Reveals the Impact of Solvent-Enabled Proton Transfer, Synthetic Route of 19444-84-9, the publication is ACS Sustainable Chemistry & Engineering (2020), 8(32), 12270-12276, database is CAplus.

Bio-sourced mols. should increasingly contribute to meeting societal demands for energy and chems., while reducing net carbon dioxide release and the dependence on fossil resources. Especially oxygenated chems. can be derived from carbohydrates, and the conversion of carbohydrates in protic and nonprotic solvents has attracted considerable interest. Here, we probe chemocatalytic carbohydrate conversion in a time-resolved manner using quant. in situ NMR spectroscopy. A core reaction network in the carbohydrate conversion by Sn(IV) in nonprotic solvents is followed by identifying and quant. tracking 10 chems. with more than 70 at. sites. In situ anal. yields nine rate constants and shows that (co)solvents with labile protons strongly affect tautomerization kinetics and product distributions at an upstream branch point of the reaction network. Solvent-enabled tautomerization and the ensuing accumulation of reactive 1,2-dicarbonyl compounds can thus be key factors influencing reaction kinetics and atom economy in carbohydrate conversion. A reaction network for carbohydrate valorization was observed, revealing the impact of solvent protons on the desired process and on aggregation and degradation reactions.

ACS Sustainable Chemistry & Engineering published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Synthetic Route of 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Fialho, David M.’s team published research in Journal of the American Chemical Society in 143 | CAS: 19444-84-9

Journal of the American Chemical Society published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, HPLC of Formula: 19444-84-9.

Fialho, David M. published the artcileDepsipeptide nucleic acids: Prebiotic formation, oligomerization, and self-assembly of a new proto-nucleic acid candidate, HPLC of Formula: 19444-84-9, the publication is Journal of the American Chemical Society (2021), 143(34), 13525-13537, database is CAplus and MEDLINE.

The mechanism by which informational polymers first formed on the early earth is currently unknown. The RNA world hypothesis implies that RNA oligomers were produced prebiotically, before the emergence of enzymes, but the demonstration of such a process remains challenging. Alternatively, RNA may have been preceded by an earlier ancestral polymer, or proto-RNA, that had a greater propensity for self-assembly than RNA, with the eventual transition to functionally superior RNA being the result of chem. or biol. evolution. We report a new class of nucleic acid analog, depsipeptide nucleic acid (DepsiPNA), which displays several properties that are attractive as a candidate for proto-RNA. The monomers of depsipeptide nucleic acids can form under plausibly prebiotic conditions. These monomers oligomerize spontaneously when dried from aqueous solutions to form nucleobase-functionalized depsipeptides. Once formed, these DepsiPNA oligomers are capable of complementary self-assembly and are resistant to hydrolysis in the assembled state. These results suggest that the initial formation of primitive, self-assembling, informational polymers on the early earth may have been relatively facile if the constraints of an RNA-first scenario are relaxed.

Journal of the American Chemical Society published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, HPLC of Formula: 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Onder, Tamer T.’s team published research in Nature (London, United Kingdom) in 483 | CAS: 1338466-77-5

Nature (London, United Kingdom) published new progress about 1338466-77-5. 1338466-77-5 belongs to tetrahydrofurans, auxiliary class Epigenetics,Histone Methyltransferase, name is 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, and the molecular formula is C28H41N7O4, Recommanded Product: 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea.

Onder, Tamer T. published the artcileChromatin-modifying enzymes as modulators of reprogramming, Recommanded Product: 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, the publication is Nature (London, United Kingdom) (2012), 483(7391), 598-602, database is CAplus and MEDLINE.

Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodelling. Whereas several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming, the role of specific chromatin-modifying enzymes in reprogramming remains to be determined To address how chromatin-modifying proteins influence reprogramming, we used short hairpin RNAs (shRNAs) to target genes in DNA and histone methylation pathways, and identified pos. and neg. modulators of iPSC generation. Whereas inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase EZH2, reduced reprogramming efficiency, suppression of SUV39H1, YY1 and DOT1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase DOT1L by shRNA or a small mol. accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for KLF4 and c-Myc (also known as MYC). Inhibition of DOT1L early in the reprogramming process is associated with a marked increase in two alternative factors, NANOG and LIN28, which play essential functional roles in the enhancement of reprogramming. Genome-wide anal. of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. DOT1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.

Nature (London, United Kingdom) published new progress about 1338466-77-5. 1338466-77-5 belongs to tetrahydrofurans, auxiliary class Epigenetics,Histone Methyltransferase, name is 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, and the molecular formula is C28H41N7O4, Recommanded Product: 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Varghese, Sincy’s team published research in Biocatalysis and Agricultural Biotechnology in 36 | CAS: 19444-84-9

Biocatalysis and Agricultural Biotechnology published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C8H8O3, Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one.

Varghese, Sincy published the artcileAntidiabetic and antilipidemic effect of Clerodendrum paniculatum flower ethanolic extract. An in vivo investigation in Albino Wistar rats, Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one, the publication is Biocatalysis and Agricultural Biotechnology (2021), 102095, database is CAplus.

The goal was to evaluate the effects of ethanolic extract of Clerodendrum paniculatum flower (CPF) on antidiabetic and antilipidemic tests indexes of exptl.-induced hyperglycemic rats. High Fat Diet (HFD) treated Streptozotocin (STZ) induced diabetic rats were used for this study. The acute toxicity of ethanolic extract of C. paniculatum flower (2000 mg/kg body weight) and antidiabetic effect of CPF (200 mg/kg body weight)were studied in rats. Glibenclamide (1.25 mg/kg body weight) was used as a reference drug. For antihyperglycemic evaluation, glucose, C-peptide, Insulin, Hb and glycosylated Hb(HbA1c) levels were analyzed. Low d. lipoprotein (LDL), High d. lipoprotein(HDL), triglycerides and total cholesterol were analyzed in rats. The enzymic antioxidant activity (super oxide dismutase(SOD), glutathione peroxidase(GPx), glutathione S transferase (GST) and Catalase) and non-enzymic antioxidant activity(vitamin C, vitamin E and reduced glutathione) of C. Paniculatum flower were evaluated. Important carbohydrate metabolizing enzymes like Glucose 6-phosphatase, Fructose 1and 6 diphosphatase and hexokinase were determined in exptl. rats. After the oral administration of CPF extract significantly reduced glucose levels and cholesterol values. Extract improved enzymic and non enzymic antioxidant levels. CPF extract is useful in controlling blood glucose level as well as improving lipid metabolism and body weight in rats with induced diabetic rats.

Biocatalysis and Agricultural Biotechnology published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C8H8O3, Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kiddane, Anley Teferra’s team published research in Current Issues in Molecular Biology in 44 | CAS: 19444-84-9

Current Issues in Molecular Biology published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Synthetic Route of 19444-84-9.

Kiddane, Anley Teferra published the artcileAnticancer and Apoptotic Activity in Cervical Adenocarcinoma HeLa Using Crude Extract of Ganoderma applanatum, Synthetic Route of 19444-84-9, the publication is Current Issues in Molecular Biology (2022), 44(3), 1012-1026, database is CAplus and MEDLINE.

Cancer is currently one of the foremost health challenges and a leading cause of death worldwide. Cervical cancer is caused by cofactors, including oral contraceptive use, smoking, multiparity, and HIV infection. One of the major and considerable etiologies is the persistent infection of the oncogenic human papilloma virus. G. applanatum is a valuable medicinal mushroom that has been widely used as a folk medicine for the treatment and prevention of various diseases. In this study, we obtained crude extract from G. applanatum mushroom with a subcritical water extraction method; cell viability assay was carried out and the crude extract showed an antiproliferative effect in HeLa cells with IC50 of 1.55 ± 0.01 mg/mL; however, it did not show any sign of toxicity in HaCaT. Protein expression was detected by Western blot, stability of IκBα and downregulation of NFκB, IKKα, IKKβ, p-NFκB-65(Ser 536) and p-IKKα/β(Ser 176/180), suggesting loss of survival in a dose-dependent manner. RT-qPCR revealed RNA/mRNA expression; fold changes of gene expression in Apaf-1, caspase-3, cytochrome-c, caspase-9, Bax and Bak were increased, which implies apoptosis, and NFκB was decreased in a dose-dependent manner. DNA fragmentation was seen in the treatment groups as compared to the control group using gel electrophoresis. Identification and quantification of compounds were carried out by GC-MS and HPLC, resp.; 2(5H)furanone with IC50 of 1.99 ± 0.01 μg/mL could be the responsible anticancer compound In conclusion, these findings suggest the potential use of the crude extract of G. applanatum as a natural source with anticancer activity against cervical cancer.

Current Issues in Molecular Biology published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Synthetic Route of 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Vanheer, Leen N.’s team published research in ACS Infectious Diseases in 7 | CAS: 1338466-77-5

ACS Infectious Diseases published new progress about 1338466-77-5. 1338466-77-5 belongs to tetrahydrofurans, auxiliary class Epigenetics,Histone Methyltransferase, name is 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, and the molecular formula is C44H28ClFeN4, HPLC of Formula: 1338466-77-5.

Vanheer, Leen N. published the artcileActivity Comparison of Epigenetic Modulators against the Hemoprotozoan Parasites Babesia divergens and Plasmodium falciparum, HPLC of Formula: 1338466-77-5, the publication is ACS Infectious Diseases (2021), 7(8), 2277-2284, database is CAplus and MEDLINE.

Babesiosis is a tick-borne parasitic disease of humans and livestock that has dramatically increased in frequency and geog. range over the past few decades. Infection of cattle often causes large economic losses, and human infection can be fatal in immunocompromised patients. Unlike for malaria, another disease caused by hemoprotozoan parasites, limited treatment options exist for Babesia infections. As epigenetic regulation is a promising target for new antiparasitic drugs, we screened 324 epigenetic inhibitors against Babesia divergens blood stages and identified 75 (23%) and 17 (5%) compounds that displayed ≥90% inhibition at 10 and 1μM, resp., including over a dozen compounds with activity in the low nanomolar range. We observed differential activity of some inhibitor classes against Babesia divergens and Plasmodium falciparum parasites and identified pairs of compounds with a high difference in activity despite a high similarity in chem. structure, highlighting new insights into the development of epigenetic inhibitors as antiparasitic drugs.

ACS Infectious Diseases published new progress about 1338466-77-5. 1338466-77-5 belongs to tetrahydrofurans, auxiliary class Epigenetics,Histone Methyltransferase, name is 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, and the molecular formula is C44H28ClFeN4, HPLC of Formula: 1338466-77-5.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kim, Jung-Hun’s team published research in Bioresource Technology in 323 | CAS: 19444-84-9

Bioresource Technology published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, SDS of cas: 19444-84-9.

Kim, Jung-Hun published the artcileComparative study on carbon dioxide-cofed catalytic pyrolysis of grass and woody biomass, SDS of cas: 19444-84-9, the publication is Bioresource Technology (2021), 124633, database is CAplus and MEDLINE.

This study investigated the mechanistic functions of CO2 on the pyrolysis of two different biomasses to elucidate the effect of CO2 on syngas formations during pyrolysis. To this end, CO2-assisted pyrolysis of cellulosic biomass (barnyard grass, Echinochloa) and lignin-rich woody biomass (retinispora, Chamaecyparis obtusa) were compared. The confirmed mechanistic effectiveness of CO2 on pyrolysis of biomass was gas phase reactions between CO2 and volatile matters from biomass pyrolysis. Lignin-rich biomass had more CO2 susceptibility, resulting in more enhanced CO formation via the gas phase reactions. To expedite the slow reaction rate of the gas phase reactions during biomass pyrolysis, earth-abundant catalysts (Co/SiO2 and Ni/SiO2) were employed for pyrolysis of two biomass substrates. With Co and Ni catalysts, the syngas formations were 2 and 3 times higher comparing to the pyrolysis of without catalyst. The cumulative formations of syngas from lignin-rich biomass was nearly doubled than that from cellulosic biomass.

Bioresource Technology published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, SDS of cas: 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Graves, Brian M.’s team published research in Scientific Reports in 10 | CAS: 19444-84-9

Scientific Reports published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Category: tetrahydrofurans.

Graves, Brian M. published the artcileComprehensive characterization of mainstream marijuana and tobacco smoke, Category: tetrahydrofurans, the publication is Scientific Reports (2020), 10(1), 7160, database is CAplus and MEDLINE.

Recent increases in marijuana use and legalization without adequate knowledge of the risks necessitate the characterization of the billions of nanoparticles contained in each puff of smoke. Tobacco smoke offers a benchmark given that it has been extensively studied. Tobacco and marijuana smoke particles are quant. similar in volatility, shape, d. and number concentration, albeit with differences in size, total mass and chem. composition Particles from marijuana smoke are on average 29% larger in mobility diameter than particles from tobacco smoke and contain 3.4 times more total mass. New measurements of semivolatile fractions determined that >97% of the mass and volume of the particles from either smoke source are comprised of semivolatile compounds For tobacco smoke and marijuana smoke, resp., 4350 and 2575 different compounds are detected, of which 670 and 536 (231 in common) are tentatively identified, and of these, 173 and 110 different compounds (69 in common) are known to cause neg. health effects through carcinogenic, mutagenic, teratogenic, or other toxic mechanisms. This study demonstrates striking similarities between marijuana and tobacco smoke in terms of their phys. and chem. properties.

Scientific Reports published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Category: tetrahydrofurans.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Groenewold, Gary S.’s team published research in Energy & Fuels in 31 | CAS: 19444-84-9

Energy & Fuels published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Safety of 3-Hydroxydihydrofuran-2(3H)-one.

Groenewold, Gary S. published the artcilePyrolysis Two-Dimensional GC-MS of Miscanthus Biomass: Quantitative Measurement Using an Internal Standard Method, Safety of 3-Hydroxydihydrofuran-2(3H)-one, the publication is Energy & Fuels (2017), 31(2), 1620-1630, database is CAplus.

Accurate measurement of biomass pyrolysis products can provide valuable guidance for thermal processing. However, pyrolysis generates large numbers of compounds in varying concentrations, factors that can make compound identification and quantitation difficult. In this study, Miscanthus biomass samples were analyzed using pyrolysis/two-dimensional gas chromatog./mass spectrometry (Py-GCxGC-MS), which provided a more comprehensive chromatog. separation and mass spectral compound identification. Quant. measurement was performed for 34 calibrated pyrolysis compounds using an internal standard method. Pyrolysis efficiency was measured as a function of sample mass, pyrolysis temperature, and pyrolysis temperature ramp rate. For most of the calibrated pyrolysis products, production efficiency decreased with sample mass, increased with pyrolysis temperature, and decreased with pyrolysis temperature ramp rate. Significantly, the temperature profiles of the different pyrolysis products were variable, notably acetic acid and the vinyl and formyl derivatives of phenol and guaiacol, which were produced at lower temperatures compared to other compounds such as the syringyl derivatives and levoglucosan. Lignol ratios were compared with those generated using 1H/13C heteronuclear single quantum coherence (HSQC) NMR spectroscopy (NMR). Lower fractions of syringyl- and guaiacyl-lignols and higher fractions of the phenol-lignols were generated by Py-GCxGC-MS compared to HSQC-NMR.

Energy & Fuels published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Safety of 3-Hydroxydihydrofuran-2(3H)-one.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Basavapathruni, Aravind’s team published research in Chemical Biology & Drug Design in 80 | CAS: 1338466-77-5

Chemical Biology & Drug Design published new progress about 1338466-77-5. 1338466-77-5 belongs to tetrahydrofurans, auxiliary class Epigenetics,Histone Methyltransferase, name is 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, and the molecular formula is C28H41N7O4, Application In Synthesis of 1338466-77-5.

Basavapathruni, Aravind published the artcileConformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L, Application In Synthesis of 1338466-77-5, the publication is Chemical Biology & Drug Design (2012), 80(6), 971-980, database is CAplus and MEDLINE.

DOT1L is the human protein methyltransferase responsible for catalyzing the methylation of histone H3 on lysine 79 (H3K79). The ectopic activity of DOT1L, associated with the chromosomal translocation that is a universal hallmark of MLL-rearranged leukemia, is a required driver of leukemogenesis in this malignancy. Here, we present studies on the structure-activity relation of aminonucleoside-based DOT1L inhibitors. Within this series, we find that improvements in target enzyme affinity and selectivity are driven entirely by diminution of the dissociation rate constant for the enzyme-inhibitor complex, leading to long residence times for the binary complex. The biochem. Ki and residence times measured for these inhibitors correlate well with their effects on intracellular H3K79 methylation and MLL-rearranged leukemic cell killing. Crystallog. studies reveal a conformational adaptation mechanism associated with high-affinity inhibitor binding and prolonged residence time; these studies also suggest that conformational adaptation likewise plays a critical role in natural ligand interactions with the enzyme, hence, facilitating enzyme turnover. These results provide critical insights into the role of conformational adaptation in the enzymic mechanism of catalysis and in pharmacol. intervention for DOT1L and other members of this enzyme class.

Chemical Biology & Drug Design published new progress about 1338466-77-5. 1338466-77-5 belongs to tetrahydrofurans, auxiliary class Epigenetics,Histone Methyltransferase, name is 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, and the molecular formula is C28H41N7O4, Application In Synthesis of 1338466-77-5.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem