Zhou, Zhilei’s team published research in Journal of Chromatography A in 1487 | CAS: 19444-84-9

Journal of Chromatography A published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C22H18O2, Synthetic Route of 19444-84-9.

Zhou, Zhilei published the artcileElucidation of the aroma compositions of Zhenjiang aromatic vinegar using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry and gas chromatography-olfactometry, Synthetic Route of 19444-84-9, the publication is Journal of Chromatography A (2017), 218-226, database is CAplus and MEDLINE.

In this work, a method to characterize the aroma compounds of Zhenjiang aromatic vinegar (ZAV) was developed using comprehensive two dimensional gas chromatog. (GC × GC) coupled with time-of-flight mass spectrometry (TOFMS) and gas chromatog. olfactometry (GC-O). The column combination was optimized and good separation was achieved. Structured chromatograms of furans and pyrazines were obtained and discussed. A total of 360 compounds were tentatively identified based on mass spectrum match factors, structured chromatogram and linear retention indexes comparison. The most abundant class in number was ketones. A large number of esters, furans and derivatives, aldehydes and alcs. were also detected. The odor-active components were identified by comparison of the reported odor of the identified compounds with the odor of corresponding GC-O region. The odorants of methanethiol, 2-methyl-propanal, 2-methyl-butanal/3-methyl-butanal, octanal, 1-octen-3-one, di-Me trisulfide, trimethyl-pyrazine, acetic acid, 3-(methylthio)-propanal, furfural, benzeneacetaldehyde, 3-methyl-butanoic acid/2-methyl-butanoic acid and phenethyl acetate were suspected to be the most potent. About half of them were identified as significant aroma constituents in ZAV for the first time. Their contribution to specific sensory attribute of ZAJ was also studied. The results indicated that the presented method is suitable for characterization of ZAV aroma constituents. This study also enriches our knowledge on the components and aroma of ZAV.

Journal of Chromatography A published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C22H18O2, Synthetic Route of 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Qingyin’s team published research in Science of the Total Environment in 791 | CAS: 19444-84-9

Science of the Total Environment published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Application of 3-Hydroxydihydrofuran-2(3H)-one.

Li, Qingyin published the artcileCo-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products, Application of 3-Hydroxydihydrofuran-2(3H)-one, the publication is Science of the Total Environment (2021), 148134, database is CAplus and MEDLINE.

Co-hydrothermal carbonization (HTC) of livestock manure and biomass might improve the fuel properties of the hydrochar due to the high reactivity of the biomass-derived intermediates with the abundant oxygen-containing functionalities. However, the complicated compositions make it difficult to explicit the specific roles of the individual components of biomass played in the co-HTC process. In this study, cellulose was used for co-HTC with swine manure to investigate the influence on the properties of the hydrochar. The yield of hydrochar obtained from co-HTC reduced gradually with the cellulose proportion increased, and the solid yield was lower than the theor. value. This was because the cellulose-derived intermediates favored the stability of the fragments from hydrolysis of swine manure. The increased temperature resulted in the reduction of the hydrochar yield whereas the prolonged time enhanced the formation of solid product. The interaction of the co-HTC intermediates facilitated the formation of O-containing species, thus making the solid more oxygen- and hydrogen-rich with a higher volatility. In addition, the co-HTC affected the evolution of functionalities like -OH and C=O during the thermal treatment of the hydrochar and altered its morphol. by stuffing the pores from swine manure-derived solid with the microspheres from HTC of cellulose. The interaction of the varied intermediates also impacted the formation of amines, ketones, carboxylic acids, esters, aromatics and the polymeric products in distinct ways.

Science of the Total Environment published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Application of 3-Hydroxydihydrofuran-2(3H)-one.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wu, Haijun’s team published research in Renewable Energy in 192 | CAS: 19444-84-9

Renewable Energy published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C7H11N, Computed Properties of 19444-84-9.

Wu, Haijun published the artcilePromoting the conversion of poplar to bio-oil based on the synergistic effect of alkaline hydrogen peroxide, Computed Properties of 19444-84-9, the publication is Renewable Energy (2022), 107-117, database is CAplus.

The synergistic catalysis effect of NaOH and H2O2 on the hydrothermal liquefaction (HTL) of poplar was investigated and compared to the NaOH or H2O2 catalyzed HTL at different temperatures and 30 min residence time. GC-MS, GPC, FT-IR, HPLC and TGA were used to comprehensively characterize the phys. and chem. properties of liquefied products (bio-oil, lignin and solid residue). The results showed that the highest total bio-oil yield (70.65%) was obtained at 280°C with NaOH (35 g/L)/H2O2 (30 g/L) as catalysts. The average mol. weight and polydispersity index (PDI) were found to be lower compared to that from other conditions. As the NaOH concentration was increased, the bio-oil yield was improved. The concentration of H2O2 for the optimal synergistic effect was observed to be 30 g/L. GC-MS anal. showed that the bio-oil obtained by NaOH (35 g/L)/H2O2 (30 g/L) was characterized with the lowest N content. The synergistic effect promoted the higher production selectivity of o-xylene and p-xylene in the bio-oil.

Renewable Energy published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C7H11N, Computed Properties of 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Remon, Javier’s team published research in ACS Sustainable Chemistry & Engineering in 7 | CAS: 19444-84-9

ACS Sustainable Chemistry & Engineering published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Synthetic Route of 19444-84-9.

Remon, Javier published the artcileToward Renewable-Based, Food-Applicable Prebiotics from Biomass: A One-Step, Additive-Free, Microwave-Assisted Hydrothermal Process for the Production of High Purity Xylo-oligosaccharides from Beech Wood Hemicellulose, Synthetic Route of 19444-84-9, the publication is ACS Sustainable Chemistry & Engineering (2019), 7(19), 16160-16172, database is CAplus.

Xylooligosaccharides (XOS) produced from biomass offer a plethora of excellent physicochem. and physiol. properties to be used as natural prebiotic nutraceuticals. Herein, this work first addresses and optimizes a novel one-pot, additive-free, microwave-assisted process to produce high purity XOS from beech wood hemicellulose, studying the influence of the temperature, reaction time, and solid loading. These variables exerted a significant influence, allowing the transformation of hemicellulose into a gas (0-19%), an XOS-rich liquid product (9-80%) and a spent solid material (17-90%). The liquid phase consisted of a mixture of XOS with a d.p. (DP) DP > 6 (75-100 C-weight %) and DP 3-6 (0-10 C-weight %), together with mono/disaccharides (0-1 C-weight %), carboxylic acids (0-5 C-weight %), ketones (0-12 C-weight %) and furans (0-12 C-weight %). A good compromise between the liquid yield (81%) and XOS purity (96 C-weight %) was achieved at 172 °C using a solid loading of 5 weight % for 47 min. This time could be reduced (33 min) and the solid loading increased (25 weight %) without substantially altering the XOS (98 C-weight %) purity, although the liquid yield was reduced. The liquid yield could be increased up to 97% at the expenses of XOS purity (90 C-weight %) at 177 °C using a 5 weight % solid loading for 60 min. For these optima, the microwave production costs shifted between 1.42 and 6.50 euro/kg XOS, which is substantially lower than the XOS market price, thus highlighting the high potential of this emerging technol. Novel microwave-assisted hydrothermal process assessed and optimized for the production of food-applicable prebiotic nutraceuticals from beech wood hemicellulose.

ACS Sustainable Chemistry & Engineering published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Synthetic Route of 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Yuanyi’s team published research in Food Chemistry in 357 | CAS: 19444-84-9

Food Chemistry published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Name: 3-Hydroxydihydrofuran-2(3H)-one.

Li, Yuanyi published the artcileIdentification, quantitation and sensorial contribution of lactones in brandies between China and France, Name: 3-Hydroxydihydrofuran-2(3H)-one, the publication is Food Chemistry (2021), 129761, database is CAplus and MEDLINE.

Lactones are important flavor compounds in lots of foodstuffs. They also play an important role in brandy, but have not been studied at large. In this study, solid-phase extraction (SPE) and stir bar sorptive extraction (SBSE) combined with comprehensive two-dimensional gas chromatog. and time-of-flight mass spectrometry (GC x GC-TOFMS) were applied to identify and quantify lactones in brandies between China and France. Totally 17 lactones were identified, four of which were detected only in SBSE. Among them, γ-valerolactone, γ-heptalactone, δ-octalactone, γ-undecanolactone and δ-dodecalactone were detected in brandy for the first time. The results of partial least squares-discriminant anal. (PLS-DA) revealed that lactones distinguished regional characteristics among different brandies. The omission test showed that four lactones (OAV > 1) had direct impact on the aroma of brandy, and other seven lactones at sub-threshold (0.1 < OAV < 1) provided peach and apricot aroma characteristics through synergistic effects.

Food Chemistry published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Name: 3-Hydroxydihydrofuran-2(3H)-one.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yang, Kun’s team published research in ChemBioChem in 17 | CAS: 57124-87-5

ChemBioChem published new progress about 57124-87-5. 57124-87-5 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Thiol, name is 2-Methyl-3-tetrahydrofuranthiol, and the molecular formula is C9H10F3NO2S, Application In Synthesis of 57124-87-5.

Yang, Kun published the artcileChemical Protein Ubiquitylation with Preservation of the Native Cysteine Residues, Application In Synthesis of 57124-87-5, the publication is ChemBioChem (2016), 17(11), 995-998, database is CAplus and MEDLINE.

We report a cysteine-based ligation strategy for generating a monoubiquitylated protein while preserving the native cysteine residues on the acceptor protein. In monoubiquitylation of proliferating cell nuclear antigen (PCNA) this method circumvents the need to mutate the native cysteine residues on PCNA. The chem. ubiquitylated PCNA contains a noncleavable linkage of the same length as the native isopeptide linkage. It also retains the normal function of the native Ub-PCNA in stimulating the ATPase activity of replication factor C (RFC) and lesion bypass synthesis by Polη. This method may be adapted for chem. ubiquitylation of other proteins and for site-specific modification of a target protein at a specific site through sulfhydryl chem.

ChemBioChem published new progress about 57124-87-5. 57124-87-5 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Thiol, name is 2-Methyl-3-tetrahydrofuranthiol, and the molecular formula is C9H10F3NO2S, Application In Synthesis of 57124-87-5.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kravetz, Carolina’s team published research in BioResources in 15 | CAS: 19444-84-9

BioResources published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Category: tetrahydrofurans.

Kravetz, Carolina published the artcileCharacterization of selected pyrolysis products of diseased orange wood, Category: tetrahydrofurans, the publication is BioResources (2020), 15(3), 7118-7126, database is CAplus.

Orange trees in Brazil are often burned as a means of eradication when they become infected with Huanglongbing disease. Rather than destroying them, which is a low-value proposition, one potential option is to utilize the biomass through pyrolysis. In this preliminary work, orange trees (Citrus sinensis) otherwise selected for purging, were sampled and pyrolyzed at 500 °C, and the charcoal and bio-oil were evaluated for potential value-added use. The results showed that the pyrolysis process resulted in 26.3% charcoal, 57.6% bio-oil, and 16.0% non-condensable gases. Qual. anal. of the bio-oil by gas chromatog./mass spectrometry found 178 chem. compounds; however, only 25% of those compounds could be reliably identified. Potential applications of the compounds identified in the bio-oil were determined by examining the published literature, and it was found that at least 73% of them showed promise. Finally, initial studies on the immediate anal. of the pyrolysis charcoal showed that it potentially meets the standards set forth for Brazilian domestic use.

BioResources published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Category: tetrahydrofurans.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Campos Fraga, Mariana Myriam’s team published research in Energies (Basel, Switzerland) in 15 | CAS: 19444-84-9

Energies (Basel, Switzerland) published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Name: 3-Hydroxydihydrofuran-2(3H)-one.

Campos Fraga, Mariana Myriam published the artcileFast Pyrolysis Oil Upgrading via HDO with Fe-Promoted Nb2O5-Supported Pd-Based Catalysts, Name: 3-Hydroxydihydrofuran-2(3H)-one, the publication is Energies (Basel, Switzerland) (2022), 15(13), 4762, database is CAplus.

Due to the high acid, oxygen and water contents of fast pyrolysis oil, it requires the improvement of its fuel properties by further upgrading, such as catalytic hydrodeoxygenation (HDO). In this study, Nb2O5 was evaluated as a support of Pd-based catalysts for HDO of fast pyrolysis oil. A Pd/SiO2 catalyst was used as a reference Addnl., the impact of iron as a promoter in two different loadings was investigated. The activity of the synthesized catalysts was evaluated in terms of H2 uptake and composition of the upgraded products (gas phase, upgraded oil and aqueous phase) through elemental anal., Karl Fischer titration, GC-MS/FID and 1H-NMR. In comparison to SiO2, due to its acid sites, Nb2O5 enhanced the catalyst activity toward hydrogenolysis and hydrogenation, confirmed by the increased water formation during HDO and a higher content of hydrogen and aliphatic protons in the upgraded oil. Consequently, the upgraded oil with Nb2O5 had a lower average mol. weight and was therefore less viscous than the oil obtained with SiO2. When applied as a promoter, Fe enhanced hydrogenation and hydrogenolysis, although it slightly decreased the acidity of the support, owing to its oxophilic nature, leading to the highest deoxygenation degree (42.5 weight%) and the highest product HHV (28.2 MJ/kg).

Energies (Basel, Switzerland) published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Name: 3-Hydroxydihydrofuran-2(3H)-one.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Featherston, Aaron L.’s team published research in Science (Washington, DC, United States) in 371 | CAS: 87865-78-9

Science (Washington, DC, United States) published new progress about 87865-78-9. 87865-78-9 belongs to tetrahydrofurans, auxiliary class Nucleosides and Nucleotides,Nucleoside Analogues, name is N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide, and the molecular formula is C26H45N5O7Si2, Synthetic Route of 87865-78-9.

Featherston, Aaron L. published the artcileCatalytic asymmetric and stereo-divergent oligonucleotide synthesis, Synthetic Route of 87865-78-9, the publication is Science (Washington, DC, United States) (2021), 371(6530), 702-707, database is CAplus and MEDLINE.

We report the catalytic stereocontrolled synthesis of dinucleotides. Chiral phosphoric acid (CPA) catalysts are demonstrated to control the formation of stereogenic phosphorous centers during phosphoramidite transfer for the first time. Unprecedented levels of diastereo-divergence are also demonstrated, enabling access to either phosphite diastereomer. Notably, two different CPA scaffolds prove essential for achieving stereo-divergence: peptide-embedded phosphothreonine-derived CPAs, which reinforce and amplify the inherent substrate preference, and C2-sym. BINOL-derived CPAs, which completely overturn this stereochem. preference. The presently reported catalytic method does not require stoichiometric activators or chiral auxiliaries and enables asym. catalysis with readily available phosphoramidites. The method was applied to the stereocontrolled synthesis of diastereomeric dinucleotides as well as cyclic dinucleotides (CDNs) which are of broad interest in immono-oncol. as agonists of the STING pathway.

Science (Washington, DC, United States) published new progress about 87865-78-9. 87865-78-9 belongs to tetrahydrofurans, auxiliary class Nucleosides and Nucleotides,Nucleoside Analogues, name is N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide, and the molecular formula is C26H45N5O7Si2, Synthetic Route of 87865-78-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Drenichev, M. S.’s team published research in Synthesis in | CAS: 87865-78-9

Synthesis published new progress about 87865-78-9. 87865-78-9 belongs to tetrahydrofurans, auxiliary class Nucleosides and Nucleotides,Nucleoside Analogues, name is N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide, and the molecular formula is C26H45N5O7Si2, Safety of N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide.

Drenichev, M. S. published the artcileA new protocol for selective cleavage of acyl protecting groups in 2′-O-modified 3′,5′-O-(tetraisopropyldisiloxane-1,3-diyl)ribonucleosides, Safety of N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide, the publication is Synthesis (2010), 3827-3834, database is CAplus.

The stability of tetraisopropyldisiloxane-1,3-diyl (TIPDS) protection in nucleosides in ammonia/amine solutions in methanol and ethanol was studied. In ammonia-methanol at ambient temperature significant partial cleavage of TIPDS was observed When ethanol was used instead of methanol this undesired side reaction was completely inhibited. It was found that com. available 8 M methylamine-ethanol solution is the reagent of choice for selective deacylation of N- or/and O-acyl protected nucleosides without notable cleavage of 3′,5′-TIPDS group. Several examples of the developed protocol for the preparation 2′-O-modified nucleosides with overall high yields are presented.

Synthesis published new progress about 87865-78-9. 87865-78-9 belongs to tetrahydrofurans, auxiliary class Nucleosides and Nucleotides,Nucleoside Analogues, name is N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide, and the molecular formula is C26H45N5O7Si2, Safety of N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem