Kozgunova, Elena et al. published their research in Plant and Cell Physiology in 2016 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Haspin has multiple functions in the plant cell division regulatory network was written by Kozgunova, Elena;Suzuki, Takamasa;Ito, Masaki;Higashiyama, Tetsuya;Kurihara, Daisuke. And the article was included in Plant and Cell Physiology in 2016.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Progression of cell division is controlled by various mitotic kinases. In animal cells, phosphorylation of histone H3 at Thr3 by the kinase Haspin (haploid germ cell-specific nuclear protein kinase) promotes centromeric Aurora B localization to regulate chromosome segregation. However, less is known about the function of Haspin in regulatory networks in plant cells. Here, we show that inhibition of Haspin with 5-iodotubercidin (5-ITu) in Bright Yellow-2 (BY-2) cells delayed chromosome alignment. Haspin inhibition also prevented the centromeric localization of Aurora3 kinase (AUR3) and disrupted its function. This suggested that Haspin plays a role in the specific positioning of AUR3 on chromosomes in plant cells, a function conserved in animals. The results also indicated that Haspin and AUR3 are involved in the same pathway, which regulates chromosome alignment during prometaphase/metaphase. Remarkably, Haspin inhibition by 5-ITu also led to a severe cytokinesis defect, resulting in binuclear cells with a partially formed cell plate. The 5-ITu treatment did not affect microtubules, AUR1/2 or the NACK-PQR pathway; however, it did alter the distribution of actin filaments on the cell plate. Together, these results suggested that Haspin has several functions in regulating cell division in plant cells: in the localization of AUR3 on centromeres and in regulating late cell plate expansion during cytokinesis. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Radcliffe, Christopher et al. published their research in American Journal of Transplantation in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Electric Literature of C13H19N3O7

Real-world experience with available, outpatient COVID-19 therapies in solid organ transplant recipients during the omicron surge was written by Radcliffe, Christopher;Palacios, Carlo Foppiano;Azar, Marwan M.;Cohen, Elizabeth;Malinis, Maricar. And the article was included in American Journal of Transplantation in 2022.Electric Literature of C13H19N3O7 The following contents are mentioned in the article:

The SARS-CoV-2 pandemic continues to place a substantial burden on healthcare systems. Outpatient therapies for mild-to-moderate disease have reduced hospitalizations and deaths in clin. trials, but the real-world effectiveness of monoclonal antibodies and oral antiviral agents in solid organ transplant recipients (SOTR) with coronavirus disease-2019 (COVID-19) is largely uncharacterized. We conducted a single-center, retrospective review of 122 SOTR diagnosed with COVID-19 in the outpatient setting during the Omicron surge to address this knowledge gap. The mean age was 54 years, 57% were males, and 67% were kidney transplant recipients. The mean time from transplant to COVID-19 diagnosis was 75 mo. Forty-nine (40%) received molnupiravir, 24 (20%) received sotrovimab, and 1 (0.8%) received nirmatrelvir/ritonavir. No outpatient therapy was administered in 48 (39%). All 122 SOTR had >30 days follow-up. Rates of hospitalization within 30 days of initiating therapy for molnupiravir, nirmatrelvir/ritonavir, and sotrovimab were 16% (8/49), 0% (0/1), and 8% (2/24), resp., compared to 27% (13/48) in patients without outpatient therapy. There were no deaths in those who received any therapy vs. 3 (6%) deaths in patients without outpatient therapy (p = .002). Overall, our experience suggests a role for monoclonal antibodies and oral antiviral agents in reducing COVID-19-related morbidity and mortality in SOTR. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Electric Literature of C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Electric Literature of C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Huang, Xudong et al. published their research in Journal of Structural Biology in 2009 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Product Details of 24386-93-4

Structural insights into the inhibited states of the Mer receptor tyrosine kinase was written by Huang, Xudong;Finerty, Patrick Jr.;Walker, John R.;Butler-Cole, Christine;Vedadi, Masoud;Schapira, Matthieu;Parker, Sirlester A.;Turk, Benjamin E.;Thompson, Debra A.;Dhe-Paganon, Sirano. And the article was included in Journal of Structural Biology in 2009.Product Details of 24386-93-4 The following contents are mentioned in the article:

The mammalian ortholog of the retroviral oncogene v-Eyk, and a receptor tyrosine kinase upstream of antiapoptotic and transforming signals, Mer (MerTK) is a mediator of the phagocytic process, being involved in retinal and immune cell clearance and platelet aggregation. Mer knockout mice are viable and are protected from epinephrine-induced pulmonary thromboembolism and ferric chloride-induced thrombosis. Mer overexpression, on the other hand, is associated with numerous carcinomas. Although Mer adaptor proteins and signaling pathways have been identified, it remains unclear how Mer initiates phagocytosis. When bound to its nucleotide cofactor, the high-resolution structure of Mer shows an autoinhibited αC-Glu-out conformation with insertion of an activation loop residue into the active site. Mer complexed with compound-52 (C52: 2-(2-hydroxyethylamino)-6-(3-chloroanilino)-9-isopropylpurine), a ligand identified from a focused library, retains its DFG-Asp-in and αC-Glu-out conformation, but acquires other conformational changes. The αC helix and DFGL region is closer to the hinge region and the ethanolamine moiety of C52 binds in the groove formed between Leu593 and Val601 of the P-loop, causing a compression of the active site pocket. These conformational states reveal the mechanisms of autoinhibition, the pathophysiol. basis of disease-causing mutations, and a platform for the development of chem. probes. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Product Details of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Product Details of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Abu-Melha, Sraa et al. published their research in Molecules in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Recommanded Product: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Potential COVID-19 Drug Candidates Based on Diazinyl-Thiazol-Imine Moieties: Synthesis and Greener Pastures Biological Study was written by Abu-Melha, Sraa;Edrees, Mastoura Mohamed;Said, Musa A.;Riyadh, Sayed M.;Al-Kaff, Nadia S.;Gomha, Sobhi M.. And the article was included in Molecules in 2022.Recommanded Product: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate The following contents are mentioned in the article:

A novel series of 1-aryl-N-[4-phenyl-5-((arylazo)thiazol-2-yl)methanimines] has been synthesized via the condensation of 2-amino-4-phenyl-5-arylazothiazole with various aromatic aldehydes. The synthesized imines were characterized by spectroscopic techniques, namely 1H and 13C-NMR, FTIR, MS, and Elemental Anal. A mol. comparative docking study for 3a-f was calculated, with reference to two approved drugs, Molnupiravir and Remdesivir, using 7BQY (Mpro; PDB code 7BQY; resolution: 1.7 A°) under identical conditions. The binding scores against 7BQY were in the range of -7.7 to -8.7 kcal/mol for 3a-f. The high scores of the compounds indicated an enhanced binding affinity of the mols. to the receptor. This is due to the hydrophobic interactions and multi-hydrogen bonds between 3a-f ligands and the receptor′s active amino acid residues. The main aim of using in silco mol. docking was to rank 3a-f with respect to the approved drugs, Molnupiravir and Remdesivir, using free energy methods as greener pastures. A further interesting comparison presented the laydown of the ligands before and after mol. docking. These results and other supporting statistical analyses suggested that ligands 3a-f deserve further investigation in the context of potential therapeutic agents for COVID-19. Free-cost, PASS, SwissADME, and Way2drug were used in this research paper to determine the possible biol. activities and cytotoxicity of 3a-f. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Recommanded Product: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Recommanded Product: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Peairs, A. et al. published their research in Clinical and Experimental Immunology in 2009 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C11H13IN4O4

Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells was written by Peairs, A.;Radjavi, A.;Davis, S.;Li, L.;Ahmed, A.;Giri, S.;Reilly, C. M.. And the article was included in Clinical and Experimental Immunology in 2009.Synthetic Route of C11H13IN4O4 The following contents are mentioned in the article:

Recent reports show that 5-amino-4-imidazole carboxamide riboside (AICAR), a pharmacol. activator of AMP-activated protein kinase (AMPK), inhibits the lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. MRL/MPJ-Faslpr (MRL/lpr) mice show an intrinsic decreased threshold for the production of inflammatory mediators when stimulated. In our current studies, we sought to determine if AMPK activation would inhibit inflammatory mediator production in stimulated kidney mesangial cells. Cultured mesangial cells from MRL/lpr mice were treated with AICAR and stimulated with LPS/interferon (IFN)-γ. AICAR decreased dose-dependently inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and interleukin-6 production in LPS/IFN-γ-stimulated mesangial cells. Mechanistically, AICAR inhibited the LPS/IFN-γ-stimulated PI3K/Akt signalling inflammatory cascade but did not affect LPS/IFN-γ-mediated inhibitory kappa B phosphorylation or nuclear factor (NF)-κB (p65) nuclear translocation. Treatment with the adenosine kinase inhibitor 5′-iodotubercidin blocked the ability of AICAR to activate AMPK and prevented AICAR from inhibiting the LPS/IFN-γ-stimulated PI3K/Akt pathway and attenuating iNOS expression. Taken together, these observations suggest that AICAR inhibits LPS/IFN-γ-induced Akt phosphorylation through AMPK activation and may serve as a potential therapeutic target in inflammatory diseases. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Synthetic Route of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Synthetic Route of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Mirza, Nasir et al. published their research in Human Molecular Genetics in 2017 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C11H13IN4O4

Identifying new antiepileptic drugs through genomics-based drug repurposing was written by Mirza, Nasir;Sills, Greame J.;Pirmohamed, Munir;Marson, Anthony G.. And the article was included in Human Molecular Genetics in 2017.COA of Formula: C11H13IN4O4 The following contents are mentioned in the article:

Currently available antiepileptic drugs (AEDs) fail to control seizures in 30% of patients. Genomics-based drug repurposing (GBR) offers the potential of savings in the time and cost of developing new AEDs. In the current study, we used published data and software to identify the transcriptomic signature of chornic temporal lobe epilepsy and the drugs that reverse it. After filtering out compounds based on exclusion criteria, such as toxicity, 36 drugs were retained. 11 of the 36 drugs identified (>30%) have published evidence of the antiepileptic efficacy (for example, curcumin) or antiepileptogenic affect (for example, atorvastatin) in recognized rodent models or patients. By objectively annotating all ∼20,000 compounds in the LINCS database as either having published evidence of antiepileptic efficacy or lacking such evidence, we demonstrated that our set of repurposable drugs is ∼6-fold more enriched with drugs having published evidence of antiepileptic efficacy in animal models than expected by chance (P-value <0.006). Further, we showed that another of our GBR-identified drugs, the commonly-used well-tolerated antihyperglycemic sitagliptin, produces a dose-dependent reduction in seizures in a mouse model of pharmacoresistant epilepsy. In conclusion, GBR successfully identifies compounds with antiepileptic efficacy in animal models and, hence, it is an appealing methodol. for the discovery of potential AEDs. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4COA of Formula: C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Mauchle, Ulrike et al. published their research in Veterinary Journal in 2015 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C11H13IN4O4

Identification of anti-proliferative kinase inhibitors as potential therapeutic agents to treat canine osteosarcoma was written by Mauchle, Ulrike;Selvarajah, Gayathri T.;Mol, Jan A.;Kirpensteijn, Jolle;Verheije, Monique H.. And the article was included in Veterinary Journal in 2015.Computed Properties of C11H13IN4O4 The following contents are mentioned in the article:

Osteosarcoma is the most common primary bone tumor in dogs but various forms of therapy have not significantly improved clin. outcomes. As dysregulation of kinase activity is often present in tumors, kinases represent attractive mol. targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated.The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Computed Properties of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Computed Properties of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Faingold, Carl L. et al. published their research in Epilepsy Research in 2016 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Synthetic Route of C11H13IN4O4

Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine was written by Faingold, Carl L.;Randall, Marc;Kommajosyula, Srinivasa P.. And the article was included in Epilepsy Research in 2016.Synthetic Route of C11H13IN4O4 The following contents are mentioned in the article:

Sudden unexpected death in epilepsy (SUDEP) is rare but is an important public health burden due to the number of patient years lost. Respiratory dysfunction following generalized convulsive seizure is a common sequence of events in witnessed SUDEP cases. The DBA/2 mouse model of SUDEP exhibits generalized convulsive audiogenic seizures (AGSz), which result in seizure-induced respiratory arrest (S-IRA) in ∼75% of these animals, while the remaining DBA/2 mice exhibit AGSz without S-IRA. SUDEP induction may involve actions of adenosine, which is released during generalized seizures in animals and patients and is known to depress respiration. This study examined the effects of systemic administration of agents that alter the actions of adenosine on the incidence of S-IRA in DBA/2 mice. DBA/2 mice that consistently exhibited AGSz without S-IRA showed a significantly increased incidence of S-IRA following treatment with 5-iodotubercidin, which blocks adenosine metabolism Treatment of DBA/2 mice that consistently exhibited AGSz followed by S-IRA with a non-selective adenosine antagonist, caffeine, or an A2A adenosine receptor subtype-selective antagonist (SCH 442416) significantly reduced S-IRA incidence. By contrast, an A1 adenosine receptor antagonist (DPCPX) was not effective in reducing S-IRA incidence. These findings suggest that preventative approaches for SUDEP should consider agents that reduce the actions of adenosine. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Synthetic Route of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Synthetic Route of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yu, Wenyu et al. published their research in Bioorganic & Medicinal Chemistry in 2013 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 24386-93-4

Bromo-deaza-SAH: A potent and selective DOT1L inhibitor was written by Yu, Wenyu;Smil, David;Li, Fengling;Tempel, Wolfram;Fedorov, Oleg;Nguyen, Kong T.;Bolshan, Yuri;Al-Awar, Rima;Knapp, Stefan;Arrowsmith, Cheryl H.;Vedadi, Masoud;Brown, Peter J.;Schapira, Matthieu. And the article was included in Bioorganic & Medicinal Chemistry in 2013.Application of 24386-93-4 The following contents are mentioned in the article:

Chem. inhibition of proteins involved in chromatin-mediated signaling is an emerging strategy to control chromatin compaction with the aim to reprogram expression networks to alter disease states. Protein methyltransferases constitute one of the protein families that participate in epigenetic control of gene expression, and represent a novel therapeutic target class. Recruitment of the protein lysine methyltransferase DOT1L at aberrant loci is a frequent mechanism driving acute lymphoid and myeloid leukemias, particularly in infants, and pharmacol. inhibition of DOT1L extends survival in a mouse model of mixed lineage leukemia. A better understanding of the structural chem. of DOT1L inhibition would accelerate the development of improved compounds Here, we report that the addition of a single halogen atom at a critical position in the cofactor product S-adenosylhomocysteine (SAH, an inhibitor of SAM-dependent methyltransferases) results in an 8-fold increase in potency against DOT1L, and reduced activities against other protein and non-protein methyltransferases. We solved the crystal structure of DOT1L in complex with Bromo-deaza-SAH and rationalized the observed effects. This discovery reveals a simple strategy to engineer selectivity and potency towards DOT1L into the adenosine scaffold of the cofactor shared by all methyltransferases, and can be exploited towards the development of clin. candidates against mixed lineage leukemia. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Application of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Hooshmand, Seyed Aghil et al. published their research in Molecular Diversity in 2021 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application of 2492423-29-5

A multimodal deep learning-based drug repurposing approach for treatment of COVID-19 was written by Hooshmand, Seyed Aghil;Zarei Ghobadi, Mohadeseh;Hooshmand, Seyyed Emad;Azimzadeh Jamalkandi, Sadegh;Alavi, Seyed Mehdi;Masoudi-Nejad, Ali. And the article was included in Molecular Diversity in 2021.Application of 2492423-29-5 The following contents are mentioned in the article:

Abstract: Recently, various computational methods have been proposed to find new therapeutic applications of the existing drugs. The Multimodal Restricted Boltzmann Machine approach (MM-RBM), which has the capability to connect the information about the multiple modalities, can be applied to the problem of drug repurposing. The present study utilized MM-RBM to combine two types of data, including the chem. structures data of small mols. and differentially expressed genes as well as small mols. perturbations. In the proposed method, two sep. RBMs were applied to find out the features and the specific probability distribution of each datum (modality). Besides, RBM was used to integrate the discovered features, resulting in the identification of the probability distribution of the combined data. The results demonstrated the significance of the clusters acquired by our model. These clusters were used to discover the medicines which were remarkably similar to the proposed medications to treat COVID-19. Moreover, the chem. structures of some small mols. as well as dysregulated genes’ effect led us to suggest using these mols. to treat COVID-19. The results also showed that the proposed method might prove useful in detecting the highly promising remedies for COVID-19 with min. side effects. All the source codes are accessible using https://github.com/LBBSoft/Multimodal-Drug-Repurposing.git Graphic abstract: [graphic not available: see fulltext]. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Application of 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Application of 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem