New learning discoveries about 184950-35-4

184950-35-4, 184950-35-4 (Tetrahydrofuran-3-yl)methanamine hydrochloride 17750392, aTetrahydrofurans compound, is more and more widely used in various fields.

184950-35-4, (Tetrahydrofuran-3-yl)methanamine hydrochloride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Production Example 235 (0556) 4-Chloro-3-(2-naphthylmethoxymethyl)-1-methyl-1H-pyra zole-5-carboxylic acid (0.72 g, 2.2 mmol), tetrahydrofuran-3-ylmethylamine hydrochloride (0.36 g, 2.6 mmol), triethylamine (0.27 g, 2.6 mmol) and 1-hydroxybenzotriazole (0.04 g, 0.26 mmol) were added to chloroform (amylene addition product) (5.4 mL). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (0.50 g, 2.6 mmol) was added to the mixture at room temperature, and the mixture was stirred overnight and then concentrated under reduced pressure. Dilute hydrochloric acid was added to the concentrate, and the mixture was extracted twice with ethyl acetate. The organic layer was washed with saturated saline water, dried over anhydrous sodium sulfate, and then concentrated under reduced pressure. The residue was applied to a silica gel column chromatography to obtain N-(tetrahydrofuran-3-ylmethyl)-4-chloro-3-(2-naphthylmethox ymethyl)-1-methyl-1H-pyrazole-5-carboxamide (hereinafter, referred to as Compound of Present Invention (244)) in the following formula. 1H-NMR(CDCl3, TMS, delta(ppm)):1.64-1.72(1H, m), 2.01-2.08(1H, m), 2.55-2.61(1H, m), 3.36-3.49 (2H, m), 3.59(1H, dd), 3.77(1H, q), 3.83-3.94(5H, dd), 4.59(2H, s), 4.65(2H, s), 6.89(1H, br.s), 7.41-7.44(1H, m), 7.47-7.51(2H, m), 7.77-7.85(4H, m)

184950-35-4, 184950-35-4 (Tetrahydrofuran-3-yl)methanamine hydrochloride 17750392, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; Sumitomo Chemical Company, Limited; MITSUDERA, Hiromasa; AWASAGUCHI, Kenichiro; AWANO, Tomotsugu; UJIHARA, Kazuya; EP2952096; (2015); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 453-20-3

As the paragraph descriping shows that 453-20-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.453-20-3,3-Hydroxytetrahydrofuran,as a common compound, the synthetic route is as follows.

To a 1 L flask, 3-tetrahydrofuran (3-OH-THF, 60.6 g, 0.68 mol, 1 equ.) was charged, followed by DCM (620 mL) and TEMPO(1.08 g, 0.0069 mol, 0.01 equ.) The solution was cooled to -5 ¡ãC. To which TCCA (159.6 g, 0.68 mol, 1 equ.) was added in portions controlling the tern- perature around -5 ¡ãC to 0 ¡ãC. The resulting mixture was allowed to warm to rt and monitored by GC-MS, Reaction was finished in 1 h to give 95percent yield (GC areapercent)., 453-20-3

As the paragraph descriping shows that 453-20-3 is playing an increasingly important role.

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL TRADING (SHANGHAI) CO., LTD; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; XING, Lidong; DONG, Weitong; LU, Jun; SCHOLZ, Ulrich; YAN, Jun; YANG, Jinsong; WO2014/140017; (2014); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 453-20-3

The synthetic route of 453-20-3 has been constantly updated, and we look forward to future research findings.

453-20-3,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.453-20-3,3-Hydroxytetrahydrofuran,as a common compound, the synthetic route is as follows.

Intermediate 46: (2S)-tetrahydrofuran-3-yl 2-((tert-butoxycarbonyl)amino)-3,3- dimethylbutanoate A mixture of (S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoic acid (2.5 g, 10.8 mmol), diisopropylethylamine (2.79 g, 3.78 mL, 21.6 mmol), 1-hydroxybenzotriazole hydrate (1.99g, 12.97 mmol), EDC (2.49 g, 12.97 mmol), and tetrahydrofuran-3-ol (9.52 g, 8.76 mL, 123 mmol) in DMF (20 mL) was stirred at room temperature overnight. The reaction mixture was partitioned between ethyl acetate (50 mL) and saturated NaHCO3 (50 mL). The organic phase was washed with 1M hydrochloric acid (50 mL), water (50 mL) and brine (50 mL). The organic phase was dried and evporated to give the title compound (2.7 g, 8.96 mmol, 83 % yield) as a colourless oil.1H NMR (400 MHz, CDCl3) delta ppm 5.30-5.35 (m, 1H), 5.05-5.12 (m, 1H), 3.79-4.09 (m, 4H), 1.97-2.22 (m, 2H), 1.43 (s, 9H), 0.97 (s, 9H).

The synthetic route of 453-20-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GLAXOSMITHKLINE INTELLECTUAL PROPERTY DEVELOPMENT LIMITED; BIT, Rino Antonio; BROWN, John Alexander; HUMPHREYS, Philip G.; JONES, Katherine Louise; (240 pag.)WO2016/146738; (2016); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 453-20-3

The synthetic route of 453-20-3 has been constantly updated, and we look forward to future research findings.

453-20-3, 3-Hydroxytetrahydrofuran is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 4-tert-butyl-2-nitrophenol (1.05 g, 5.4 mmol) in anh THF (25 mL) was added 3-hydroxytetrahydrofuran (0.47 g, 5.4 mmol) and triphenylphosphine (1.55 g, 5.9 mmol) followed by diethyl azodicarboxylate (0.93 ml, 5.9 mmol) and the mixture was allowed to stir at room temp. for 4 h. The resulting mixture was diluted with Et2O (50 mL) and washed with a saturated NH4Cl solution (50 mL) and a saturated NaCl solution (50 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was purified by flash cromatography (30% EtOAc/70% hexane) to yield the desired ether as a yellow solid (1.3 g, 91%):, 453-20-3

The synthetic route of 453-20-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bayer Corporation; EP1449834; (2004); A2;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Simple exploration of 111769-27-8

The synthetic route of 111769-27-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.111769-27-8,(R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

To a mixture of l-(6-chloro-5-methyl-l-(quinolin-2-yl)-lH-benzo[111769-27-8

The synthetic route of 111769-27-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NOVASAID AB; WANNBERG, Johan; ALTERMAN, Mathias; MALM, Johan; WO2012/117062; (2012); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 88675-24-5

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

88675-24-5,88675-24-5, Tetrahydrofuran-3-amine is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A suspension of (+/-)-tetrahydro~3-furanamine (1.1 g, 8.90 mmol, Small Molecules Inc., NJ, USA), 1 ,1-dimethyIethyl (2-bromoethy.)carbamate (1.995 g, 8.90 mmol), and potassium carbonate (3.69 g, 26.7 mmol) in N.N-dimethylformannide (15 mL) was maintained at 50 ¡ãC in a sealed pressure vessel for 16 hours. The mixture was cooled, diluted with ethyi acetate, and poured into water. The organic layer was washed twice with 5percent LiCI (aqueous), dried over sodium sulfate, and taken to a residue under reduced pressure to afford 1 ,1-dimethylethyl [2-(tetrahydro-3- furanylamino)ethyl]carbamate (1.33 g, 5.77 mmol, 65percent yield, roughly 50percent purity) as a clear oil used immediately in the subsequent transformation

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GLAXOSMITHKLINE LLC; BANKA, Anna; CATALANO, John, G.; CHONG, Pek, Yoke; FANG, Jing; GARRIDO, Dulce, Maria; PEAT, Andrew, James; PRICE, Daniel, J.; SHOTWELL, John, Brad; TAI, Vincent; ZHANG, Huichang; WO2011/41713; (2011); A2;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 149809-43-8

As the paragraph descriping shows that 149809-43-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.149809-43-8,((3R,5R)-5-((1H-1,2,4-Triazol-1-yl)methyl)-5-(2,4-difluorophenyl)tetrahydrofuran-3-yl)methyl 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

To a solution of intermediate (Xla) (7.80 g, 25.1 mmol) in DMSO (60 mL) was added aq sodium hydroxide (3.0 mL, 12.5 M, 37.6 mmol). The mixture was stirred at RT for 10 min and was then treated portionwise with ((3S,5 )-5-((1 /-/-1 ,2,4-triazol-1-yl)methyl)-5-(2,4-difluoro phenyl)tetrahydrofuran-3-yl)methyl4-methylbenzenesulfonate (IX) (ex APIChem, Catalogue Number: AC-8330, 12.4 g, 27.6 mmol). The reaction mixture was stirred at 30C for 18 hr, cooled to RT and water (200 mL) was added. The resulting mixture was extracted with EtOAc (3 x 200 mL) and the combined organic extracts were washed with brine (2 x 200 mL), and then dried and evaporated in vacuo to afford a brown oil. Analysis of the crude, Boc-protected product (Vila) by 1 H NMR indicated that it contained -10% of the alkene: ( )-1-((2-(2,4- difluorophenyl)-4-methylenetetrahydrofuran-2-yl)methyl)-1 /-/-1 ,2,4-triazole, formed as an elimination by-product. The crude urethane (Vila) was taken up into DCM (150 mL) and treated with TFA (39.0 mL, 502 mmol). After 2 hr at RT the reaction mixture was concentrated in vacuo to remove most of the volatiles and was then diluted with EtOAc (200 mL) and washed with aq. NaOH (2 M, 200 mL). The aq phase was separated and was extracted with EtOAc (2 x 200 mL). The combined organic extracts were washed with brine (2 x 200 mL) and then dried and evaporated in vacuo to afford a light brown oil. The crude product was purified by flash column chromatography (Si02, 80 g, 0-10% 0.7 M NH3/MeOH in DCM, gradient elution) to afford the title compound, intermediate (V), as a viscous, light brown oil (9.46 g, 80%); R’ 1.91 min (Method b); m/z 470 (M+H)+ (ES+); 1 H NMR delta: 2.07 (3H, s), 2.15 (1 H, dd), 2.36-2.42 (1 H, m), 2.52-2.56 (1 H, m), 2.79-2.81 (4H, m), 2.87-2.90 (4H, m), 3.66 (1 H, dd), 3.73-3.77 (2H, m), 4.04 (1 H, t), 4.57 (2H, dd), 6.64 (1 H, dd), 6.70-6.75 (2H, m), 6.99 (1 H, td), 7.25-7.34 (2H, m), 7.76 (1 H, s) and 8.34 (1 H, s)., 149809-43-8

As the paragraph descriping shows that 149809-43-8 is playing an increasingly important role.

Reference£º
Patent; PULMOCIDE LIMITED; SUNOSE, Mihiro; COLLEY, Thomas Christopher; ITO, Kazuhiro; RAPEPORT, Garth; STRONG, Peter; (55 pag.)WO2016/87878; (2016); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 124391-75-9

124391-75-9, The synthetic route of 124391-75-9 has been constantly updated, and we look forward to future research findings.

124391-75-9, (S)-(Tetrahydrofuran-3-yl)methanol is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(1) a chloroform solution (100 mL) of tetrahydrofuran-3-ylmethanol (5.1 g), at room temperature, triethylamine (13.8 mL), trimethylamine hydrochloride (1.43 g), p-toluenesulfonyl chloride (11.4 g ), and the mixture was stirred for 14 hours. The reaction mixture was washed with saturated brine, and the organic layer was dried over anhydrous magnesium sulfate.After filtration over anhydrous magnesium sulfate, and N, and N- dimethylformamide (100 mL) was added a solution under reduced pressure the solvent was distilled off the resulting residue was (14.2 g). Then potassium carbonate (13.8 g), and stirred for 2 hours 30 minutes at 65 C. was added 2-mercaptobenzothiazole and (10.0g).Distilled water was added to the reaction mixture and extracted with ethyl acetate.The organic layer was washed with saturated brine, and dried with anhydrous magnesium sulfate.After filtration over anhydrous magnesium sulfate, toluene under azeotropic vacuo, and evaporated to give a residue (10.4 g). It was dissolved adding chloroform (75mL), under ice-cooling, and the mixture was stirred for 18 hours added m- chloroperbenzoic acid (24.9g). After stirring added a saturated aqueous sodium thiosulfate solution and saturated aqueous sodium bicarbonate sulfate, and extracted with chloroform. The organic layer was concentrated under reduced pressure 2- (tetrahydrofuran-3-yl-methyl-sulfonyl) -1,3-benzothiazole (11.4 g) as a yellow oily substance.

124391-75-9, The synthetic route of 124391-75-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; TAISHO PHARMACEUTICAL COMPANY LIMITED; NISSAN CHEMICAL INDUSTRIES LIMITED; KURODA, SHOICHI; USHIKI, YASUNOBU; KAWAGUCHI, TAKANORI; FUSEGI, KEIKO; BOHNO, MASAHIRO; IMAI, YUDAI; UNEUCHI, FUMITO; IWAKIRI, KANAKO; TANAKA, HIROAKI; BOHNO, AYAKO; CHONAN, TOMOMICHI; ITOH, SHIN; OTA, HIROFUMI; ISHIYAMA, SEISHI; OKADA, TAKUYA; SASAKO, SHIGETADA; MONMA, SOUICHI; NIWA, MARIE; OKADA, TAKUMI; (289 pag.)JP2015/231988; (2015); A;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 97-99-4

97-99-4 (Tetrahydrofuran-2-yl)methanol 7360, aTetrahydrofurans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.97-99-4,(Tetrahydrofuran-2-yl)methanol,as a common compound, the synthetic route is as follows.

97-99-4, To a mixture of (R)-(tetrahydrofuran-2-yl)methanol (Fluka, 4.0 g, 39.2 mmol) and di-tert-butyl hydrazine-1,2-dicarboxylate (9.1 g, 39.2 mmol) in THF (50 mL) was added triphenylphosphine (14.4 g, 54.8 mmol) followed by (E)-di-tert-butyl diazene-1,2-dicarboxylate (12.6 g, 54.8 mmol), portionwise. This mixture was stirred at ambient temperature for 16 h then was concentrated under reduced pressure and purified by column chromatography (SiO2, 99% hexane/EtOAc to 25% hexane/EtOAc) to give the title compound (11.8 g, 37.3 mmol, 95% yield). MS (DCI/NH3) m/z 317 (M+H)+

97-99-4 (Tetrahydrofuran-2-yl)methanol 7360, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; ABBOTT LABORATORIES; US2010/69348; (2010); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 184950-35-4

As the paragraph descriping shows that 184950-35-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.184950-35-4,(Tetrahydrofuran-3-yl)methanamine hydrochloride,as a common compound, the synthetic route is as follows.

Production Example 252 (0573) 5-(3-Chloro-4-fluorobenzyloxymethyl)isoxazole-3-carbo xylic acid (2.55 g, 8.9 mmol), tetrahydrofuran-3-ylmethylamine hydrochloride (1.84 g, 13.4 mmol), triethylamine (1.87 mL, 13.4 mmol) and 1-hydroxybenzotriazole (0.12 g, 0.9 mmol) were added to chloroform (amylene addition product) (20 mL). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (2. 05 g, 10.7 mmol) was added to the mixture at room temperature, and the mixture was stirred overnight and then concentrated under reduced pressure. Dilute hydrochloric acid was added to the residue, and the mixture was extracted three times with ethyl acetate. The organic layer was washed with a saturated aqueous sodium bicarbonate solution and saturated saline water and dried over anhydrous sodium sulfate, and then concentrated under reduced pressure. The residue was applied to a silica gel column chromatography to obtain 0.29 g of N-(tetrahydrofuran-3-ylmethyl)-5-(3-chloro-4-fluorobenzylox ymethyl)isoxazole-3-carboxamide (hereinafter, referred to as Compound of Present Invention (261)) represented by the following formula. 1H-NMR (CDCl3, TMS, delta (ppm)) : 1.62-1.73 (1H, m), 2.04-2.15 (1H, m), 2.53-2.63 (1H, m), 3.47(2H, t), 3.59 (1H, dd), 3.73-3.80 (1H, m), 3.84-3.95(2H, m), 4.54(2H, s), 4.66(2H, s), 6.73(1H, s), 6.93(1H, br s), 7.13(1H, t), 7.18-7.24(1H, m), 7.40(1H, dd), 184950-35-4

As the paragraph descriping shows that 184950-35-4 is playing an increasingly important role.

Reference£º
Patent; Sumitomo Chemical Company, Limited; MITSUDERA, Hiromasa; AWASAGUCHI, Kenichiro; AWANO, Tomotsugu; UJIHARA, Kazuya; EP2952096; (2015); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem