New learning discoveries about 42417-39-0

The synthetic route of 42417-39-0 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.42417-39-0,3-Aminodihydrofuran-2(3H)-one hydrochloride,as a common compound, the synthetic route is as follows.,42417-39-0

The batch reactor was charged with 2 g of each of HSL ¡¤ HCl, HS (homoserine) and HSL (homoserine lactone free salt) as reactants. 40 g of water and 0.1 g of Pt (5) / Ac were placed in the reactor, and the reaction for the homo-serine compound was performed under the conditions shown in Table 4 below. The product was partially recovered according to the elapsed time of the reaction, and the components were analyzed. The results are shown in Table 4 below.

The synthetic route of 42417-39-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; CJ CHEILJEDANG CORPORATION; KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY; YANG, YOUNG RYEOL; KIM, BYUNG SIK; KIM, JEONG HYUN; LEE, JUNG HO; SHIN, HYUN KWAN; KIM, JU NAM; CHO, KYUNG HO; (40 pag.)KR2015/118287; (2015); A;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 88675-24-5

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

88675-24-5,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.88675-24-5,Tetrahydrofuran-3-amine,as a common compound, the synthetic route is as follows.

a) 7-bromo-4-chloro-N-(tetrahydrofuran-3-yl)quinoline-3-sulfonamide. To a solution of 7-bromo-4-chloro-3-quinolinesulfonyl chloride (530 mg, 1 .56 mmol) and triethylamine (313 mg, 3.1 mmol) in dry dichloromethane (8 mL) was added a solution of tetrahydrofuran-3-amine (149 mg, 1 .7 mmol) in dichloromethane (2 mL) dropwise at 0 ¡ãC. The mixture was stirred for 10 minutes. TLC showed the starting material was consumed completely. Water (10 mL) was added and the mixture extracted with dichloromethane (20 mL x 3). The combined organic phases were concentrated and purified by silica gel chromatography (25percent ethyl acetate/petroleum ether) to afford the title compound (420 mg, 69percent) as a solid. 1 H NMR (300 MHz, DMSO-d6) delta ppm 1.67-1.75 (m, 1 H), 1.87-1.98 (m, 1 H), 3.41 – 3.46 (m, 1 H), 3.54-3.76 (m, 3 H), 3.86-3.92 (m, 1 H), 8.05 (dd, J=2.1 , 9.0 Hz, 1 H), 8.37 (d, J=9.0 Hz, 1 H), 8.45 (d, J=2A Hz, 1 H), 8.73 (d, J=7.5 Hz, 1 H), 9.27 (s, 1 H). LCMS (ES+) m/e 391 [M+H]+.

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GLAXOSMITHKLINE LLC; BROWN, Kristin, K.; CHAI, Deping; DODSON, Christopher, S.; DUFFY, Kevin, J.; SHAW, Antony, Nicholas; WO2013/96153; (2013); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 89364-31-8

89364-31-8 Tetrahydrofuran-3-carboxylic acid 4661317, aTetrahydrofurans compound, is more and more widely used in various fields.

89364-31-8, Tetrahydrofuran-3-carboxylic acid is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,89364-31-8

To a solution of tetrahydrofuran-3-carboxylic acid (0.247 mL, 2.58 mmol) in THF (13 mL) at 0 C was added slowly lithium aluminium hydride (1 .0 M in THF, 5.2 mL, 5.16 mmol), stirred for 10 minutes then allowed to attain room temperature and stirred for a further 3 hours. The reaction mixture was cooled to 0 C and diluted with diethyl ether (15 mL), then treated sequentially with water (0.2 mL), NaOH (15% solution, 0.2 mL) and water (0.6 mL) and stirred for 30 minutes. The white suspension was then treated with sodium sulfate, stirred for a further 20 minutes, filtered over celite, washed with diethyl ether (2x 20 mL) and concentrated in vacuo to yield 224 mg (85%) of the title compound as a colourless oil which was carried forward to the next stage without further purification. -NMR Spectrum: deltaEta (500 MHz, CDCI3): 3.90-3.84 (2H, m), 3.78-3.73 (1H, m), 3.66-3.63 (2H, m), 3.61-3.57 (1H, m), 2.51-2.46 (1H, m), 2.08-2.01 (1H, m), 1.69-1.62 (1H, m)

89364-31-8 Tetrahydrofuran-3-carboxylic acid 4661317, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; ASTEX THERAPEUTICS LIMITED; CANCER RESEARCH TECHNOLOGY LIMITED; CHESSARI, Gianni; HOWARD, Steven; BUCK, Ildiko Maria; CONS, Benjamin David; JOHNSON, Christopher Norbert; HOLVEY, Rhian Sara; REES, David Charles; ST. DENIS, Jeffrey David; TAMANINI, Emiliano; GOLDING, Bernard Thomas; HARDCASTLE, Ian Robert; CANO, Celine Florence; MILLER, Duncan Charles; CULLY, Sarah; NOBLE, Martin Edward Maentylae; OSBORNE, James Daniel; PEACH, Joanne; LEWIS, Arwel; HIRST, Kim Louise; WHITTAKER, Benjamin Paul; WATSON, David Wyn; MITCHELL, Dale Robert; (293 pag.)WO2017/55860; (2017); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 5061-21-2

As the paragraph descriping shows that 5061-21-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5061-21-2,2-Bromo-4-butanolide,as a common compound, the synthetic route is as follows.

5061-21-2, 3,4-Dihydro-2-(2-hydroxyethyl)-7-nitro-3-oxo-2H-1,4-benzoxazine Method D: 2-amino-5-nitrophenol (13.5 g, 87.6 mmol, 1 eq.) and alpha-bromo-gamma-butyrolactone (8.0 ml, 96.3 mmol, 1.1 eq.) were added to a stirring mixture of DMF (80 ml) and potassium carbonate (12.1 g, 87.6 mmol). After refluxing 5 hours and returning to room temperature, the reaction was poured into an equal volume of ice water and was stirred 15 minutes before being filtered. The resulting brown solid was dried in vacuo at 65 C. to afford a 45% yield of the product, mp 177-178 C.; MS (FAB) MH+ 239; IR (KBr) 3541, 3204, 3095, 3037, 2929, 2888, 1699, 1599, 1508, 1480, 1417, 1389, 1342, 1299, 1136, 1034, 798, 617, 499 cm-1; 1 H NMR (DMSO-d6) delta11.32 (br s, 1H), 7.91 (dd, 1H, J=2.4, 8.7 Hz), 7.79 (s, 1H), 7.05 (d, 1H, J=8.7 Hz), 4.82 (dd, 1H, J=3.8, 9.0 Hz), 4.70 (br s, 1H), 3.59 (m, 2H), 1.98 (m, 1H), 1.90 (m, 1H). Anal. Calc’d for C10 H10 N2 O5: C 50.42, H 4.23, N 11.76. Found: C 50.37, H 4.20, N 11.43.

As the paragraph descriping shows that 5061-21-2 is playing an increasingly important role.

Reference£º
Patent; Ortho Pharmaceutical Corporation; US5696117; (1997); A;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 5061-21-2

The synthetic route of 5061-21-2 has been constantly updated, and we look forward to future research findings.

5061-21-2, 2-Bromo-4-butanolide is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5061-21-2, General procedure: To a stirred mixture of thiols 12a-12k (100 mmol) and K2CO3(27.64 g, 200 mmol) in DMF (120 mL) at room temperaturewas added alpha-bromobutyrolactone (10, 14.85 g, 90 mmol), andthe resulting mixture was stirred at room temperature until thecompletion of reaction as indicated by TLC analysis (typicallywithin 12 h).The reaction mixture was poured into ice-water (400 mL),and the mixture thus obtained was extracted with CH2Cl2 (3 ¡Á100 mL). The combined extracts were washed successively with10% aqueous Na2CO3 (2 ¡Á 100 mL) and 5% brine (3 ¡Á 100 mL),dried over anhydrous Na2SO4 and evaporated on a rotary evaporator to aord a residue, which was purifed by columnchromatography to yield 13a-13k after trituration withEtOAc/n-hexane if the product was a solid.

The synthetic route of 5061-21-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhang, Xiansheng; Wu, Jingwei; Liu, Yuqiang; Xie, Yafei; Liu, Changying; Wang, Jianwu; Zhao, Guilong; Phosphorus, Sulfur and Silicon and the Related Elements; vol. 192; 7; (2017); p. 799 – 811;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 219823-47-9

219823-47-9 (R)-Tetrahydrofuran-3-yl 4-methylbenzenesulfonate 13837325, aTetrahydrofurans compound, is more and more widely used in various fields.

219823-47-9, (R)-Tetrahydrofuran-3-yl 4-methylbenzenesulfonate is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

4-(beta-D-glucopyranos-1-yl)-1-methyl-2-f4-(^SJ-tetrahvdrofuran-3-yloxy)-benzvn- benzene (R)-3-(4-methyIphenylsulfonyloxy)-tetrahydrofuran (4.9 g) is added to a mixture of 4- (beta-D-glucopyranos-1-yl)-2-(4-hydroxy-be?zyl)-1 -methyl-benzene (4.9 g) and cesium carbonate (6.6 g) in dimethylformamide (50 mL). The mixture is stirred at 60 0C for 8 h, before more cesium carbonate (0.7 g) and (R)-3-(4-methylphenyi-suIfonyIoxy)- tetrahydrofuran (0.5 g) are added. After an additional 14 h stirring at 80 0C, the mixture is cooled to ambient temperature, diluted with ethyl acetate and washed with brine. The organic phase is dried (sodium sulphate) and the solvent is removed. The residue is purified by chromatography on silica gel (dichloromethane/methanol 1 :0 -> 4:1). Yield: 2.68 g (46% of theory) Mass spectrum (ESI+): m/z = 448 [IvRNH4] +, 219823-47-9

219823-47-9 (R)-Tetrahydrofuran-3-yl 4-methylbenzenesulfonate 13837325, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG; WO2008/49923; (2008); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 88675-24-5

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

88675-24-5,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.88675-24-5,Tetrahydrofuran-3-amine,as a common compound, the synthetic route is as follows.

TEA (507 mu, 3.64 mmol) was added dropwise to 2-((4-bromo-2- nitrophenyl)amino)acetic acid (500 mg, 1.818 mmol), HATU (864 mg, 2.272 mmol) 5 and tetrahydrofuran-3 -amine (198 mg, 2.272 mmol) in DCM (5 mL) and the resulting dark red mixture was stirred at room temperature for 2 hours. The mixture was treated with sodium hydrogenocarbonate (20 mL) and the precipitate filtered off and washed with water (3 x 20 mL). Flash chromatography (0-100percent EtOAc+lpercentMeOH in iso- hexanes, 40 g silica) gave 2-((4-bromo-2-nitrophenyl)amino)-N-(tetrahydrofuran-3- [0 yl)acetamide (382 mg, 59percent) as a orange solid; m/z 344/346 (M+H)+ (ES+).

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; CELLCENTRIC LTD; PEGG, Neil Anthony; TADDEI, David Michel Adrien; ONIONS, Stuart Thomas; TSE, Eric Sing Yuen; BROWN, Richard James; MYCOCK, David Kenneth; COUSIN, David; PATEL, Anil; (135 pag.)WO2016/170324; (2016); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 184950-35-4

184950-35-4, As the paragraph descriping shows that 184950-35-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.184950-35-4,(Tetrahydrofuran-3-yl)methanamine hydrochloride,as a common compound, the synthetic route is as follows.

Reference Production Example 1 (0647) Triethylamine (1.6 mL) and tetrahydrofuran-3-ylmethylamine hydrochloride (1.12 g, 8.14 mmol) were added to an N,N-dimethylformamide (6 mL) solution of ethyl 5-pent-1-ynyl-1,3,4-thiadiazole-2-carboxylate (950 mg, 4.24 mmol). The mixture was stirred at 40C for 20 minutes under ultrasonic irradiation, and cooled. Then, the mixture was diluted with ethyl acetate, and sequentially washed with 3% hydrochloric acid and saturated saline water, and then the organic layer was dried over anhydrous sodium sulfate. The dried matter was concentrated under reduced pressure, and the residue was applied to a silica gel column chromatography to obtain 850 mg of N-(tetrahydrofuran-3-ylmethyl)-5-(pent-1-ynyl)-1,3,4-thiadi azole-2-carboxamide represented by the following formula: as a crude product. The crude product was subjected to a next reaction as it was.

184950-35-4, As the paragraph descriping shows that 184950-35-4 is playing an increasingly important role.

Reference£º
Patent; Sumitomo Chemical Company, Limited; MITSUDERA, Hiromasa; AWASAGUCHI, Kenichiro; AWANO, Tomotsugu; UJIHARA, Kazuya; EP2952096; (2015); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 124391-75-9

124391-75-9, As the paragraph descriping shows that 124391-75-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.124391-75-9,(S)-(Tetrahydrofuran-3-yl)methanol,as a common compound, the synthetic route is as follows.

Step 1: (Tetrahydrofuran-3-yl)methyl methanesulfonate To a cooled (0 C.) solution of (tetrahydrofuran-3-yl)methanol (3.0 mL) and triethylamine (5.7 mL) in dichloromethane (30 mL) is added methanesulfonyl chloride (3.1 mL). The mixture is stirred for 12 hours at room temperature. After cooling to 0 C. triethylamine (1.3 mL) and methanesulfonyl chloride (0.7 mL) are added and the mixture is stirred for 12 hours at room temperature. The mixture is partitioned between dichloromethane and saturated aqueous NaHCO3 solution and stirred vigorously for 30 minutes. The organic phase is separated, washed with brine and dried (MgSO4). The solvent is evaporated to give the title compound. Yield: 5.6 g; TLC: rf=0.35 (silicagel, cyclohexane/ethyl acetate 1:1); Mass spectrum (ESI+): m/z=181 [M+H]+.

124391-75-9, As the paragraph descriping shows that 124391-75-9 is playing an increasingly important role.

Reference£º
Patent; Boehringer Ingelheim International GmbH; ECKHARDT, Matthias; FRATTINI, Sara; HAMPRECHT, Dieter; HIMMELSBACH, Frank; LANGKOPF, Elke; LINGARD, Iain; PETERS, Stefan; WAGNER, Holger; US2013/252937; (2013); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 111769-27-8

As the paragraph descriping shows that 111769-27-8 is playing an increasingly important role.

111769-27-8, (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

l-(5,6-Dichloro-lH-benzo[d]imidazol-2-yl)piperidine-4-carboxylic acid (628 mg, 2.0 mmol), (R)-(+)-tetrahydrofuran-3 -amine 4-methylbenzenesulfonate (622 mg, 2.4 mmol), 2-(7-aza-lH- benzotriazole-l-yl)-l, l,3,3-tetramethyluronium hexafluorophosphate (HATU, 912 mg, 2.4 mmol), N,N-diisopropylethylamine (Hiinig’s base, DIEA, 775 mg, 6.0 mmol) and N,N- dimethylformamide (25 mL) was stirred at room temperature for 100 minutes. The reaction mixure was concentrated in vacuo, the residue purified on column (silica gel, flashchromatography, dichloromethane/methanol, gradient elution 4-20 % methanol) and finally precipitated from chloroform to give 378 mg (49 % yield) of (R)-l-(5,6-dichloro-lH- benzo[d]imidazol-2-yl)-N-(tetrahydrofuran-3-yl)piperidine-4-carboxamide as a white solid. LC- MS (m/z) 382.9 (M+l)., 111769-27-8

As the paragraph descriping shows that 111769-27-8 is playing an increasingly important role.

Reference£º
Patent; NOVASAID AB; WANNBERG, Johan; ALTERMAN, Mathias; MALM, Johan; WO2012/117062; (2012); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem