Song, Yongzhi’s team published research in Polymers for Advanced Technologies in 2019 | 4415-87-6

Polymers for Advanced Technologiespublished new progress about Electrooptical instruments. 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, Computed Properties of 4415-87-6.

Song, Yongzhi; Yuan, Lili; Wang, Zhiyuan; Yang, Shiyong published the artcile< Photo-aligning of polyimide layers for liquid crystals>, Computed Properties of 4415-87-6, the main research area is photoaligning polyimide layer liquid crystal display.

A series of soluble and highly transparent semi-alicyclic polyimides (PIs) with designed flexible linkages have been synthesized derived from an alicyclic aromatic dianhydride (1,2,3,4-cyclobutanetetracarboxylic dianhydride, CBDA) and various aromatic ether-bridged diamines. The semi-alicyclic PIs were evaluated as the photo-alignment layers of liquid crystal (LC) mols. in liquid crystal display (LCD). Exptl. results indicate that the photo-alignment characteristics of LC mols. induced by the photo-aligned PI layers and the electro-optical (EO) properties of the LC cell devices are closely related with PI backbone structures. The retardation of the photo-aligned PI layers is correlated with the UV absorption intensity of PI at 220 to approx. 330 nm. The higher UV absorption intensity PI has, the higher retardation and lower pre-tilt angle the photo-aligned PI layer exhibits. The defect-free and photo-aligned PI layer could result into the uniform LC texture, which is highly desired for in-plane switching (IPS) mode LCD devices. In comparison, PI layer containing trifluoromethyl moiety shows poor photo-aligning performance because of the strong electronic withdrawing effect of the fluorinated linkage.

Polymers for Advanced Technologiespublished new progress about Electrooptical instruments. 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, Computed Properties of 4415-87-6.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Silva, Wesley R’s team published research in Molecular Catalysis in 2021-03-31 | 97-99-4

Molecular Catalysispublished new progress about Carbon nanotubes. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Reference of 97-99-4.

Silva, Wesley R.; Matsubara, Elaine Y.; Rosolen, Jose M.; Donate, Paulo M.; Gunnella, Roberto published the artcile< Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)furfural hydrogenation in water>, Reference of 97-99-4, the main research area is palladium catalyst carbonaceous substrate furfural hydroxymethylfurfural hydrogenation water.

We hydrogenated furfural and 5-(hydroxymethyl)furfural (HMF) in water in a reaction catalyzed by Pd nanoparticles on carbonaceous materials with different morphol. and hydrophobic degree. The different Pd catalysts were prepared by dipping the carbonaceous material into a Pd0 micro-emulsion. The catalyst support affected the catalytic hydrogenation of furfural and HMF. By using micrometric active carbon (AC) combined with cup-stacked carbon nanotubes (CSCNTs) and Pd0/2+ nanoparticles (Pd), we obtained a micro/nanostructured material designated Pd/CSCNT-AC, which performed better than the other carbonaceous materials containing similar Pd nanoparticle loading. Pd/CSCNT-AC produced tetrahydrofurfuryl alc. from furfural with excellent selectivity (>99%). Unlike Pd on hybrophobic spheroid graphite or hydrophilic AC, Pd/CSCNT-AC hydrogenated both the C=O and C=C double bonds of furfural and catalyzed HMF hydrogenation at the C=O double bond more selectively: between 85% and 99% selectivity toward 2,5-dihydroxymethylfuran. We also investigated how temperature, hydrogen pressure, and reaction time affected HMF hydrogenation in water. Finally, Pd/CSCNT-AC was recycled several times without significant catalytic activity loss.

Molecular Catalysispublished new progress about Carbon nanotubes. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Reference of 97-99-4.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zhang, Qingfei’s team published research in Journal of Materials Chemistry B: Materials for Biology and Medicine in 2020 | 4415-87-6

Journal of Materials Chemistry B: Materials for Biology and Medicinepublished new progress about Antitumor agents. 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, COA of Formula: C8H4O6.

Zhang, Qingfei; Kuang, Gaizhen; Zhou, Dongfang; Qi, Yanxin; Wang, Mingzhe; Li, Xiaoyuan; Huang, Yubin published the artcile< Photoactivated polyprodrug nanoparticles for effective light-controlled Pt(IV) and siRNA codelivery to achieve synergistic cancer therapy>, COA of Formula: C8H4O6, the main research area is photoactivated platinum polyprodrug nanoparticle Bcl2 siRNA synergy cancer therapy.

Endo/lysosomal escape and the subsequent controllable/precise release of drugs and genes are key challenges for efficient synergistic cancer therapy. Herein, we report a photoactivated polyprodrug nanoparticle system (PPNPsiRNA) centered on effective light-controlled codelivery of Pt(IV) prodrug and siRNA for synergistic cancer therapy. Under green-light irradiation, PPNPsiRNA can sustainedly generate oxygen-independent azidyl radicals to facilitate endo/lysosomal escape through the photochem. internalization (PCI) mechanism. Besides, concurrent Pt(II) release and siRNA unpacking could occur in a controllable manner after the decomposition of Pt(IV), main chain shattering of photoactivated polyprodrug and the PPNPsiRNA disassocn. Based on these innovative features, excellent synergistic therapeutic efficacy of chemo- and RNAi therapies of PPNPsiBcl-2 could be achieved on ovarian cancer cells under light irradiation The facile synthesized and prepared photoactivatable polyprodrug nanoparticle system provides a new strategy for effective gene/drug codelivery, where controllable endo/lysosomal escape and the subsequent drug/gene release/unpacking play vital roles, which could be adopted as a versatile codelivery nanoplatform for the treatment of various cancers.

Journal of Materials Chemistry B: Materials for Biology and Medicinepublished new progress about Antitumor agents. 4415-87-6 belongs to class tetrahydrofurans, and the molecular formula is C8H4O6, COA of Formula: C8H4O6.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Bommana, Sankhya’s team published research in Microbiology Spectrum in 2022-06-30 | 58-97-9

Microbiology Spectrumpublished new progress about Actinobacteria. 58-97-9 belongs to class tetrahydrofurans, and the molecular formula is C9H13N2O9P, Safety of ((2R,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate.

Bommana, Sankhya; Richards, Gracie; Kama, Mike; Kodimerla, Reshma; Jijakli, Kenan; Read, Timothy D.; Dean, Deborah published the artcile< Metagenomic shotgun sequencing of endocervical, vaginal, and rectal samples among Fijian women with and without Chlamydia trachomatis reveals disparate microbial populations and function across anatomic sites: a pilot study>, Safety of ((2R,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate, the main research area is Chlamydia metagenomics shotgun sequencing endocervix vagina rectum anatomy; Chlamydia trachomatis; endocervical microbiome; metabolomics; metagenomic shotgun sequencing; pathogenesis; rectal microbiome; sexually transmitted infections; vaginal microbiome.

Chlamydia trachomatis is a sexually transmitted pathogen and a global public health concern. Little is known about the microbial composition and function across endocervical, vaginal, and rectal microbiomes in the context of C. trachomatis infection. We evaluated the microbiomes of 10 age-matched high-risk Fijian women with and without C. trachomatis using metagenomic shotgun sequencing (MSS). Lactobacillus iners and Lactobacillus crispatus dominated the vagina and endocervix of uninfected women. Species often found in higher relative abundance in bacterial vaginosis (BV) – Mageeibacillus indolicus, Prevotella spp., Sneathia spp., Gardnerella vaginalis, and Veillonellaceae spp. – were dominant in C. trachomatis-infected women. This combination of BV pathogens was unique to Pacific Islanders compared to previously studied groups. The C. trachomatis-infected endocervix had a higher diversity of microbiota and microbial profiles that were somewhat different from those of the vagina. However, community state type III (CST-III) and CST-IV predominated, reflecting pathogenic microbiota regardless of C. trachomatis infection status. Rectal microbiomes were dominated by Prevotella and Bacteroides, although four women had unique microbiomes with Gardnerella, Akkermansia, Bifidobacterium, and Brachyspira. A high level of microbial similarity across microbiomes in two C. trachomatis-infected women suggested intragenitorectal transmission. A number of metabolic pathways in the endocervix, driven by BV pathogens and C. trachomatis to meet nutritional requirements for survival/growth, 5-fold higher than that in the vagina indicated that endocervical microbial functions are likely more diverse and complex than those in the vagina. Our novel findings provide the impetus for larger prospective studies to interrogate microbial/microbiome interactions that promote C. trachomatis infection and better define the unique genitorectal microbiomes of Pacific Islanders.

Microbiology Spectrumpublished new progress about Actinobacteria. 58-97-9 belongs to class tetrahydrofurans, and the molecular formula is C9H13N2O9P, Safety of ((2R,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl dihydrogen phosphate.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Mironenko, Roman M’s team published research in Catalysis Today in 2020-11-01 | 97-99-4

Catalysis Todaypublished new progress about Carbon nanofibers Role: CAT (Catalyst Use), NAN (Nanomaterial), PEP (Physical, Engineering or Chemical Process), PRP (Properties), TEM (Technical or Engineered Material Use), USES (Uses), PROC (Process). 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Application In Synthesis of 97-99-4.

Mironenko, Roman M.; Belskaya, Olga B.; Likholobov, Vladimir A. published the artcile< Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions>, Application In Synthesis of 97-99-4, the main research area is review palladium carbon hydrogenation catalyst.

A review. C-supported Pd catalysts are widely used for hydrogenation of various organic compounds in the fine chem. industry. The nanoscale geometry and electronic structure of supported Pd nanoparticles play a crucial role in providing the necessary catalytic properties. To improve catalytic activity and selectivity of Pd nanoparticles, it is possible to fine tune their intrinsic properties (e.g., size and oxidation state) by controlling the chem. transformations at different stages of catalyst preparation Recent years have seen considerable advancement in developing new catalyst preparation techniques as well as in understanding the mechanism of active site formation. This review summarizes some of the existing approaches to regulating the catalytic properties of C-supported Pd by variation of the C support, the composition of Pd precursor and its reduction conditions, as well as the addition of a 2nd active metal. The data presented may be useful for researchers developing efficient Pd/C catalysts for hydrogenation of polyfunctional organic compounds

Catalysis Todaypublished new progress about Carbon nanofibers Role: CAT (Catalyst Use), NAN (Nanomaterial), PEP (Physical, Engineering or Chemical Process), PRP (Properties), TEM (Technical or Engineered Material Use), USES (Uses), PROC (Process). 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Application In Synthesis of 97-99-4.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Xue, Ying’s team published research in Molecules in 2019 | 58-97-9

Moleculespublished new progress about Nucleic acids Role: THU (Therapeutic Use), BIOL (Biological Study), USES (Uses). 58-97-9 belongs to class tetrahydrofurans, and the molecular formula is C9H13N2O9P, Product Details of C9H13N2O9P.

Xue, Ying; Jin, Wei; Xu, Xian-Shun; Yong, Li; Hu, Bin; Xiong, Jing; Hu, Xue-Mei; Qing, Lin-Sen; Xie, Jing published the artcile< Quality evaluation of Tricholoma matsutake based on the nucleic acid compounds by UPLC-TOF/MS and UPLC-QqQ/MS>, Product Details of C9H13N2O9P, the main research area is Tricholoma nucleic acid UPLC TOF MS Southwest China; Tricholoma matsutake; UPLC-QqQ/MS; UPLC-TOF/MS; nucleic acid compound; quality evaluation.

So far, there has been no quality evaluation of Tricholoma matsutake. Nucleic acid compounds are a kind of functional ingredient in T. matsutake that is beneficial to human health. In this study, a UPLC-TOF/MS method was first used to scan and identify the potential nucleic acid compounds in T. matsutake. Based on the calculation of the mol. formula and subsequent confirmation by authentic standards, 15 nucleic acid compounds were unambiguously identified: adenosine, cytidine, guanosine, inosine, thymidine, uridine, xanthosine dehydrate, 2′- deoxyadenosine, 2′-deoxycytidine, 2′-deoxyguanosine, 2′-deoxyuridine, adenosine 5′- monophosphate, CMP, GMP, and uridine 5′- monophosphate. Then, a UPLC-QqQ/MS method was developed for the subsequent quant. anal. After validating the limits of quantification, detection, precision, repeatability, and recovery through a calibration curve, the content of 15 nucleic acid compounds was determined by the proposed UPLC-QqQ/MS method in 80 T. matsutake samples collected from different regions in Sichuan province, Southwest China. After the statistical anal., we suggest that the total content of nucleic acid compounds in the qualified T. matsutake should be higher than 24.49 mg/100 g. The results indicated that the combined use of UPLC-TOF/MS and UPLC-QqQ/MS is efficient for fast identification and determination of nucleic acid compounds to comprehensively evaluate the quality of T. matsutake.

Moleculespublished new progress about Nucleic acids Role: THU (Therapeutic Use), BIOL (Biological Study), USES (Uses). 58-97-9 belongs to class tetrahydrofurans, and the molecular formula is C9H13N2O9P, Product Details of C9H13N2O9P.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Cocq, Aurelien’s team published research in ChemCatChem in 2020-02-15 | 97-99-4

ChemCatChempublished new progress about Alcohols Role: SPN (Synthetic Preparation), PREP (Preparation). 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Name: (Tetrahydrofuran-2-yl)methanol.

Cocq, Aurelien; Leger, Bastien; Noel, Sebastien; Bricout, Herve; Djedaini-Pilard, Florence; Tilloy, Sebastien; Monflier, Eric published the artcile< Anionic Amphiphilic Cyclodextrins Bearing Oleic Grafts for the Stabilization of Ruthenium Nanoparticles Efficient in Aqueous Catalytic Hydrogenation>, Name: (Tetrahydrofuran-2-yl)methanol, the main research area is oleic succinyl beta cyclodextrin ruthenium nanoparticle catalyst preparation; petrosource biosource unsaturated compound benzene furfural hydrogenation ruthenium catalyst.

Oleic succinyl β-cyclodextrin was proved to be efficient for the stabilization of ruthenium nanoparticles (NPs) in aqueous medium. The catalytic activity of these NPs was evaluated in the aqueous hydrogenation of petrosourced and biosourced unsaturated compounds such as benzene and furfural derivatives The catalytic system can be easily recycled and reused up to nine runs without any loss of activity and selectivity, demonstrating its robustness.

ChemCatChempublished new progress about Alcohols Role: SPN (Synthetic Preparation), PREP (Preparation). 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Name: (Tetrahydrofuran-2-yl)methanol.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Chuseang, Jirawat’s team published research in Sustainable Energy & Fuels in 2021 | 97-99-4

Sustainable Energy & Fuelspublished new progress about Adsorption; Crystallinity; Hydrogenation; Hydrogenation catalysts; Hydrogenation kinetics; Surface area; Surface structure; Thermal polymer degradation. 97-99-4 belongs to class tetrahydrofurans and the molecular formula is C5H10O2, Tetrahydrofuran – Wikipedia.

Chuseang, Jirawat; Nakwachara, Rapeepong; Kalong, Munsuree; Ratchahat, Sakhon; Koo-amornpattana, Wanida; Klysubun, Wantana; Khemthong, Pongtanawat; Faungnawakij, Kajornsak; Assabumrungrat, Suttichai; Itthibenchapong, Vorranutch; Srifa, Atthapon team published the artcile< Selective hydrogenolysis of furfural into fuel-additive 2-methylfuran over a rhenium-promoted copper catalyst>, the main research area is furfural hydrogenation methylfuran rhenium copper catalyst phys chem property. Name: (Tetrahydrofuran-2-yl)methanol.

The effect of Re promoter on Cu/γ-Al2O3 catalysts with various Cu : Re molar ratios was comprehensively investigated in comparison to the monometallic Cu/γ-Al2O3 and Re/γ-Al2O3 catalysts. The combination of Re and Cu resulted in a difficulty in reduction behavior of the Cu species, as detected using hydrogen temperature-programmed reduction, indicating that the Re promoter had stronger metal-support interactions. The acidity, as confirmed by ammonia temperature-programmed desorption, increased with the Re loading. X-ray diffraction and X-ray absorption near edge structure measurements of the spent CuRe catalyst revealed the existence of metallic Cu, Cu2O, CuO, amorphous CuAl2O4, ReO3, and NH4ReO4. The as-synthesized catalysts without reduction were directly utilized for the hydrogenolysis of furfural (FAL) into the fuel additive 2-methylfuran (2-MF). The highest 2-MF yield (86.4%) was accompanied by a 10.4% 2-methyltetrahydrofuran (2-MTHF) yield using the optimal Cu1Re0.14 catalyst under the investigated conditions (200°C, 6 h, and 20 bar H2). The kinetic study using furfuryl alc. (FOL), a primary intermediate, revealed that the rate of 2-MF production for the optimal Cu1Re0.14 catalyst was faster than that of the Cu benchmark. These results indicated that a small amount of oxophilic Re species could promote the hydrogenolysis of the C-OH bond in FOL to form 2-MF due to the synergistic effect between the Cu and Re active species. In addition, the activity of the Cu1Re0.14 catalyst remained highly stable through four consecutive experiments

Sustainable Energy & Fuelspublished new progress about Adsorption; Crystallinity; Hydrogenation; Hydrogenation catalysts; Hydrogenation kinetics; Surface area; Surface structure; Thermal polymer degradation. 97-99-4 belongs to class tetrahydrofurans and the molecular formula is C5H10O2, Tetrahydrofuran – Wikipedia.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Cas: 144490-03-9 | Chan, Joseph H. et al. made new progress in 2000

(2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate(cas:144490-03-9 Reference of (2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate) is an isomer of 1,2,3,5-Tetra-O-acetyl β-D-Ribofuranose (T283100) which is used in the synthesis of 3-(β-D-ribofuranosyl)-2,3-dihydro-6H-1,3-oxazine-2,6-dione, a new pyrimidine nucleoside analog related to uridine.

Chan, Joseph H.;Chamberlain, Stanley D.;Biron, Karen K.;Davis, Michelle G.;Harvey, Robert J.;Selleseth, Dean W.;Dornsife, Ronna E.;Dark, Ernest H.;Frick, Lloyd W.;Townsend, Leroy B.;Drach, John C.;Koszalka, George W. published 《Synthesis and evaluation of a series of 2′-deoxy analogues of the antiviral agent 5,6-dichloro-2-isopropylamino-1-(β-L-ribofuranosyl)-1H-benzimidazole (1263W94)》. The research results were published in《Nucleosides, Nucleotides & Nucleic Acids》 in 2000.Reference of (2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate The article conveys some information:

A series of 2′-deoxy analogs of the antiviral agent 5,6-dichloro-2-isopropylamino-1-(β-L-ribofuranosyl)-1H-benzimidazole (1263W94) were synthesized and evaluated for activity against human cytomegalovirus (HCMV) and for cytotoxicity. The 2-substituents in the benzimidazole moiety correspond to those that were used in the 1263W94 series. In general, as was found in the 1263W94 series, cyclic and branched alkylamino groups were needed for potent activity against HCMV. Three analogs were as potent as 1263W94. Further evaluation of two analogs suggested that these 2′-deoxy analogs may act via a novel mechanism of action similar to that of 1263W94. These 2′-deoxy analogs generally lacked cytotoxicity in vitro. Pharmacokinetic parameters in mice and protein binding properties of one of the analogs (I) were quite similar to 1263W94. However, the oral bioavailability of I was only half of that observed for 1263W94. The experimental procedure involved many compounds, such as (2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate (cas: 144490-03-9) .

(2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate(cas:144490-03-9 Reference of (2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate) is an isomer of 1,2,3,5-Tetra-O-acetyl β-D-Ribofuranose (T283100) which is used in the synthesis of 3-(β-D-ribofuranosyl)-2,3-dihydro-6H-1,3-oxazine-2,6-dione, a new pyrimidine nucleoside analog related to uridine.

Reference:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Van Draanen, Nanine A. et al. published new progress in experiments with the help of cas: 144490-03-9

(2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate(cas:144490-03-9 Electric Literature of C13H18O9) is an isomer of 1,2,3,5-Tetra-O-acetyl β-D-Ribofuranose (T283100) which is used in the synthesis of 3-(β-D-ribofuranosyl)-2,3-dihydro-6H-1,3-oxazine-2,6-dione, a new pyrimidine nucleoside analog related to uridine.

Electric Literature of C13H18O9《β-L-Thymidine 5′-triphosphate analogs as DNA polymerase substrates》 was published in 1992. The authors were Van Draanen, Nanine A.;Tucker, S. Craig;Boyd, F. Leslie;Trotter, B. Wesley;Reardon, John E., and the article was included in《Journal of Biological Chemistry》. The author mentioned the following in the article:

β-L-3′-Deoxythymidine 5′-triphosphate (L-ddTTP) and β-L-3′-deoxy-2′,3′-didehydrothymidine 5′-triphosphate (L-d4TTP) were substrates for human immunodeficiency virus (HIV) reverse transcriptase, Escherichia coli DNA polymerase I (Klenow), and Sequenase (modified T7 DNA polymerase). The β-D– and β-L-enantiomers of 5-methyluridine 5′-triphosphate (rTTP) were inhibitors but not substrates of reverse transcriptase. The steady-state Km values for L-ddTTP and L-d4TTP, with all three enzymes, were 12-70-fold larger than the Km values for the corresponding D-enantiomers. The Km value of reverse transcriptase for L-ddTTP was 50-fold larger than that for D-ddTTP because the Kd for L-ddTTP was 5-fold larger than that for D-ddTTP, and the first-order rate constant for incorporation of L-ddTMP into the template-primer was 10% that of the D-enantiomer. The D– and L-enantiomers had kcat values with reverse transcriptase and Sequenase that were similar to kcat for the natural substrate, thymidine 5′-triphosphate (dTTP). Thus, the rate determining step appeared to be dissociation of the enzyme-chain-terminated template-primer complex. In contrast, kcat values for the L-enantiomers with Klenow were only 0.1% that of dTTP, and the kcat values for the D-enantiomers were 15% the kcat for dTTP. The reduced kcat values were due to a change in rate-determining step from dissociation of the Klenow-chain-terminated template-primer complex to an earlier step in the reaction mechanism, presumably catalysis. Thus, these DNA polymerases did not stereospecifically recognize D-nucleoside 5′-triphosphate analogs as substrates. The virucidal activity of some nucleoside analogs against HIV is discussed on the basis of the above results. The experimental procedure involved many compounds, such as (2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate (cas: 144490-03-9) .

(2R,3S,4S,5S)-5-(Acetoxymethyl)tetrahydrofuran-2,3,4-triyl triacetate(cas:144490-03-9 Electric Literature of C13H18O9) is an isomer of 1,2,3,5-Tetra-O-acetyl β-D-Ribofuranose (T283100) which is used in the synthesis of 3-(β-D-ribofuranosyl)-2,3-dihydro-6H-1,3-oxazine-2,6-dione, a new pyrimidine nucleoside analog related to uridine.

Reference:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem