Niemann, Birte et al. published their research in Nature (London, United Kingdom) in 2022 | CAS: 118-00-3

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one

Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine was written by Niemann, Birte;Haufs-Brusberg, Saskia;Puetz, Laura;Feickert, Martin;Jaeckstein, Michelle Y.;Hoffmann, Anne;Zurkovic, Jelena;Heine, Markus;Trautmann, Eva-Maria;Mueller, Christa E.;Toenjes, Anke;Schlein, Christian;Jafari, Azin;Eltzschig, Holger K.;Gnad, Thorsten;Blueher, Matthias;Krahmer, Natalie;Kovacs, Peter;Heeren, Joerg;Pfeifer, Alexander. And the article was included in Nature (London, United Kingdom) in 2022.Safety of 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one This article mentions the following:

Brown adipose tissue (BAT) dissipates energy and promotes cardiometabolic health. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centered obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic program in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced ′browning′ of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacol. inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, resp. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a ′replace me′ signalling function that regulates thermogenic fat and counteracts obesity. In the experiment, the researchers used many compounds, for example, 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3Safety of 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one).

2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one (cas: 118-00-3) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of 2-Amino-9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3H-purin-6(9H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ghosh, D. et al. published their research in Analytica Chimica Acta in 1991 | CAS: 6757-06-8

Sodium ((2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate (cas: 6757-06-8) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of Sodium ((2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate

Fast atom bombardment tandem mass spectrometry in the identification of isomeric ribomononucleotides was written by Ghosh, D.;Newton, R. P.;Brenton, A. G.;Harris, F. M.;Donovan, M. P.;Brown, E. G.;Walton, T. J.. And the article was included in Analytica Chimica Acta in 1991.Safety of Sodium ((2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate This article mentions the following:

Anal. of isomeric ribomononucleotides by pos.-ion fast atom bombardment tandem mass spectrometry is described. Daughter ion spectra generated by collision-induced dissociation-mass-analyzed ion kinetic energy scanning on a sector instrument are compared with daughter ion spectra from a triple quadrupole mass spectrometer, and criteria are established for the differentiation of th 2′,3′- and 5′-monophosphate isomers of adenosine, guanosine and cytosine, based on their characteristic fragmentation patterns. The value of tandem mass spectrometry in the identification of nucleotides extracted from biol. systems and isolated by HPLC and in the study of nucleotide metabolism is discussed. In the experiment, the researchers used many compounds, for example, Sodium ((2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate (cas: 6757-06-8Safety of Sodium ((2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate).

Sodium ((2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate (cas: 6757-06-8) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Safety of Sodium ((2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl phosphate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wang, Jianghai et al. published their research in Antimicrobial Agents and Chemotherapy in 1998 | CAS: 10356-76-0

4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 10356-76-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Recommanded Product: 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

An Escherichia coli system expressing human deoxyribonucleoside salvage enzymes for evaluation of potential antiproliferative nucleoside analogs was written by Wang, Jianghai;Neuhard, Jan;Eriksson, Staffan. And the article was included in Antimicrobial Agents and Chemotherapy in 1998.Recommanded Product: 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one This article mentions the following:

Deoxyribonucleoside salvage in animal cells is mainly dependent on two cytosolic enzymes, thymidine kinase (TK1) and deoxycytidine kinase (dCK), while Escherichia coli expresses only one type of deoxynucleoside kinase, i.e., TK. A bacterial whole-cell system based on genetically modified E. coli was developed in which the relevant bacterial deoxypyrimidine metabolic enzymes were mutated, and the cDNA for human dCK or TK1 under the control of the lac promoter was introduced. The TK level in extract from induced bacteria with cDNA for human TK1 was found to be 20,000-fold higher than that in the parental strain, and for the strain with human dCK, the enzyme activity was 160-fold higher. The in vivo incorporation of deoxythymidine (Thd) and deoxycytidine (dCyd) into bacterial DNA by the two recombinant strains was 20 and 40 times higher, resp., than that of the parental cells. A number of nucleoside analogs, including cytosine arabinoside, 5-fluoro-dCyd, difluoro-dCyd, and several 5-halogenated deoxyuridine analogs, were tested with the bacterial system, as well as with human T-lymphoblast CEM cells. The results showed a close correlation between the inhibitory effects of several important cytostatic and antiviral analogs on the recombinant bacteria and the cellular system. Thus, E. coli expressing human salvage kinases is a rapid and convenient model system which may complement other screening methods in drug discovery projects. In the experiment, the researchers used many compounds, for example, 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 10356-76-0Recommanded Product: 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one).

4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 10356-76-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Recommanded Product: 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Roa, Jinae N et al. published their research in American journal of physiology. Cell physiology in 2016 | CAS: 6698-26-6

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C10H13N5O2

Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells. was written by Roa, Jinae N;Tresguerres, Martin. And the article was included in American journal of physiology. Cell physiology in 2016.COA of Formula: C10H13N5O2 This article mentions the following:

Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2′,5′-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. In the experiment, the researchers used many compounds, for example, (2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6COA of Formula: C10H13N5O2).

(2R,3S,5R)-5-(6-Amino-9H-purin-9-yl)-2-methyltetrahydrofuran-3-ol (cas: 6698-26-6) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.COA of Formula: C10H13N5O2

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Tanaka, Toshiki et al. published their research in Chemical & Pharmaceutical Bulletin in 1987 | CAS: 4836-13-9

N-(1-((2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)benzamide (cas: 4836-13-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C16H17N3O5

Chemical synthesis of deoxyribonucleotide with a 5′-phosphoryl group on a polystyrene polymer support by the phosphotriester method was written by Tanaka, Toshiki;Yamada, Yasuki;Ikehara, Morio. And the article was included in Chemical & Pharmaceutical Bulletin in 1987.Synthetic Route of C16H17N3O5 This article mentions the following:

Highly lipophilic amines, e.g. Ph3COCH2CH2NH2 (I) and Ph3COCH2CH2NHPh (II), were introduced onto a 5′-phosphoryl group and the stability of the phosphoramidate linkage to acid was studied at the diester level. It was found that the phosphoramidate linkage using II was cleaved by 80% aqueous AcOH within 1 h at room temperature However, it required 2 h to remove I from the phosphate. Using II, 5′-phosphorylated pentadecadeoxyribonucleotide pTCCAGGGTCTGGTAC was synthesized on a polystyrene support by the phosphotriester method. After partial deblocking, the pentadecamer containing II could be easily isolated on a reversed-phase column due to the high lipophilicity of the II-group. The 5′-phosphorylated pentadecamer synthesized was successfully joined by using DNA ligase in the presence of a template. In the experiment, the researchers used many compounds, for example, N-(1-((2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)benzamide (cas: 4836-13-9Synthetic Route of C16H17N3O5).

N-(1-((2R,4S,5R)-4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl)benzamide (cas: 4836-13-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C16H17N3O5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Saha, Abhijit et al. published their research in Scientific Reports in 2018 | CAS: 957-75-5

5-Bromo-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (cas: 957-75-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 957-75-5

Probing of G-Quadruplex Structures via Ligand-Sensitized Photochemical Reactions in BrU-Substituted DNA was written by Saha, Abhijit;Bombard, Sophie;Granzhan, Anton;Teulade-Fichou, Marie-Paule. And the article was included in Scientific Reports in 2018.Application of 957-75-5 This article mentions the following:

We studied photochem. reactions of BrU-substituted G-quadruplex (G4) DNA substrates with two pyrene-substituted polyazamacrocyclic ligands, M-1PY and M-2PY. Both ligands bind to and stabilize G4-DNA structures without altering their folding topol., as demonstrated by FRET-melting experiments, fluorimetric titrations and CD spectroscopy. Notably, the bis-pyrene derivative (M-2PY) behaves as a significantly more affine and selective G4 ligand, compared with its mono-pyrene counterpart (M-1PY) and control compounds Upon short UVA irradiation (365 nm) both ligands, in particular M-2PY, efficiently sensitize photoreactions at BrU residues incorporated in G4 structures and give rise to two kinds of photoproducts, namely DNA strand cleavage and covalent ligand-DNA photoadducts. Remarkably, the photoinduced strand cleavage is observed exclusively with G4 structures presenting BrU residues in lateral or diagonal loops, but not with parallel G4-DNA structures presenting only propeller loops. In contrast, the formation of fluorescent photoadducts is observed with all BrU-substituted G4-DNA substrates, with M-2PY giving significantly higher yields (up to 27%) than M-1PY. Both ligand-sensitized photoreactions are specific to BrU-modified G4-DNA structures with respect to double-stranded or stem-loop substrates. Thus, ligand-sensitized photoreactions with BrU-substituted G4-DNA may be exploited (i) as a photochem. probe, allowing “photofootprinting” of G4 folding topologies in vitro and (ii) for covalent trapping of G4 structures as photoadducts with pyrene-substituted ligands. In the experiment, the researchers used many compounds, for example, 5-Bromo-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (cas: 957-75-5Application of 957-75-5).

5-Bromo-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (cas: 957-75-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application of 957-75-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Shen, Jiang-Cheng et al. published their research in Nucleic Acids Research in 1995 | CAS: 10356-76-0

4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 10356-76-0) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

A mutant HpaII methyltransferase functions as a mutator enzyme was written by Shen, Jiang-Cheng;Zingg, Jean-Marc;Yang, Allen S.;Schmutte, Christoph;Jones, Peter A.. And the article was included in Nucleic Acids Research in 1995.Application In Synthesis of 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one This article mentions the following:

DNA (cytosine-5)-methyltransferases can cause deamination of cytosine when the cofactor S-adenosylmethionine (AdoMet) is limiting and thus function as sequence-specific C → U mutator enzymes. Here we explored whether mutations causing inactivation of the cofactor binding activity of the HpaII methyltransferase, thus mimicking conditions of limiting AdoMet concentration, could convert a DNA methyltransferase to a C → U mutator enzyme. We created two mutator enzymes from the HpaII methyltransferase (F38S and G40D) which both showed enhanced cytosine deamination activities in vitro and in vivo. Interestingly, the G:U mispairs generated by these enzymes were not repaired completely in bacteria equipped with uracil-DNA glycosylase-initiated repair machinery, giving rise to a potent mutator phenotype. This is the first report showing the creation of mutator enzymes from a DNA methyltransferase and the demonstration of their mutagenicity in living cells. In the experiment, the researchers used many compounds, for example, 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 10356-76-0Application In Synthesis of 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one).

4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (cas: 10356-76-0) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Application In Synthesis of 4-Amino-5-fluoro-1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Hunsberger, Holly C. et al. published their research in Scientific Reports in 2020 | CAS: 2140-69-4

1-((2R,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3-methylpyrimidine-2,4(1H,3H)-dione (cas: 2140-69-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Recommanded Product: 2140-69-4

Divergence in the metabolome between natural aging and Alzheimer’s disease was written by Hunsberger, Holly C.;Greenwood, Bennett P.;Tolstikov, Vladimir;Narain, Niven R.;Kiebish, Michael A.;Denny, Christine Ann. And the article was included in Scientific Reports in 2020.Recommanded Product: 2140-69-4 This article mentions the following:

Alzheimer’s disease (AD) is a progressive and debilitating neurodegenerative disorder and one of the leading causes of death in the United States. Although amyloid plaques and fibrillary tangles are hallmarks of AD, research suggests that pathol. associated with AD often begins 20 or more years before symptoms appear. Therefore, it is essential to identify early-stage biomarkers in those at risk for AD and age-related cognitive decline (ARCD) in order to develop preventative treatments. Here, we used an untargeted metabolomics anal. to define system-level alterations following cognitive decline in aged and APP/PS1 (AD) mice. At 6, 12, and 24 mo of age, both control (Ctrl) and AD mice were tested in a 3-shock contextual fear conditioning (CFC) paradigm to assess memory decline. AD mice exhibited memory deficits across age and these memory deficits were also seen in naturally aged mice. Prefrontal cortex (PFC), hippocampus (HPC), and spleen were then collected and analyzed for metabolomic alterations. A number of significant pathways were altered between Ctrl and AD mice and naturally aged mice. By identifying systems-level alterations following ARCD and AD, these data could provide insights into disease mechanisms and advance the development of biomarker panels. In the experiment, the researchers used many compounds, for example, 1-((2R,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3-methylpyrimidine-2,4(1H,3H)-dione (cas: 2140-69-4Recommanded Product: 2140-69-4).

1-((2R,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-3-methylpyrimidine-2,4(1H,3H)-dione (cas: 2140-69-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Recommanded Product: 2140-69-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Krishna, Marothu Vamsi et al. published their research in Acta Ciencia Indica, Chemistry in 2006 | CAS: 81403-68-1

N-(3-((4-Amino-6,7-dimethoxyquinazolin-2-yl)(methyl)amino)propyl)tetrahydrofuran-2-carboxamide hydrochloride (cas: 81403-68-1) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Quality Control of N-(3-((4-Amino-6,7-dimethoxyquinazolin-2-yl)(methyl)amino)propyl)tetrahydrofuran-2-carboxamide hydrochloride

Spectrophotometric determination of alfuzocin hydrochloride in pure form and in pharmaceutical formulations by using Folin-Ciocalteu reagent and potassium ferricyanide was written by Krishna, Marothu Vamsi;Sankar, Dannana Gowri. And the article was included in Acta Ciencia Indica, Chemistry in 2006.Quality Control of N-(3-((4-Amino-6,7-dimethoxyquinazolin-2-yl)(methyl)amino)propyl)tetrahydrofuran-2-carboxamide hydrochloride This article mentions the following:

Two accurate, simple and precise spectrophotometric methods (1 and 2) are described for the determination of alfuzocin-HCl (AFZ) in bulk and in pharmaceutical formulations. Method 1 was based on the reduction of Folin-Ciocalteu reagent by AFZ, in presence of sodium hydroxide. The colored species formed shows absorption maximum at 760 nm. Method 2 was based on the oxidation of AFZ by ferric chloride in the presence of potassium ferricyanide. The colored complex formed was measured at 750 nm. The optimum exptl. parameters for the color production are selected. Beer’s law is valid with in a concentration range of 50-250 μg mL-1 for method 1 and 8.0-40.0 μg mL-1 for method 2. The results obtained were reproducible and statistically validated and found to be suitable for the assay of alfuzocin. In the experiment, the researchers used many compounds, for example, N-(3-((4-Amino-6,7-dimethoxyquinazolin-2-yl)(methyl)amino)propyl)tetrahydrofuran-2-carboxamide hydrochloride (cas: 81403-68-1Quality Control of N-(3-((4-Amino-6,7-dimethoxyquinazolin-2-yl)(methyl)amino)propyl)tetrahydrofuran-2-carboxamide hydrochloride).

N-(3-((4-Amino-6,7-dimethoxyquinazolin-2-yl)(methyl)amino)propyl)tetrahydrofuran-2-carboxamide hydrochloride (cas: 81403-68-1) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Quality Control of N-(3-((4-Amino-6,7-dimethoxyquinazolin-2-yl)(methyl)amino)propyl)tetrahydrofuran-2-carboxamide hydrochloride

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Biel, Markus et al. published their research in Chemistry – A European Journal in 2006 | CAS: 40856-59-5

Boc-L-Homoserine lactone (cas: 40856-59-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.HPLC of Formula: 40856-59-5

Synthesis and evaluation of acyl protein thioesterase 1 (APT1) inhibitors was written by Biel, Markus;Deck, Patrick;Giannis, Athanassios;Waldmann, Herbert. And the article was included in Chemistry – A European Journal in 2006.HPLC of Formula: 40856-59-5 This article mentions the following:

Lipid-modified proteins play decisive roles in important biol. processes such as signal transduction, organization of the cytoskeleton and vesicular transport. Lipidation of these proteins is essential for correct biol. function. Among the modifications with lipids, prenylation and myristoylation are well understood. However, the machinery of palmitoylation is still under investigation. Recently, an enzyme, acyl protein thioesterase 1 (APT1), that may play a regulatory role in the palmitoylation cycle of H-Ras and G-protein α subunits, was purified. Motivated by this work, several lipopeptide inhibitors of APT1 were designed, synthesized and biol. evaluated to be highly active compounds In the experiment, the researchers used many compounds, for example, Boc-L-Homoserine lactone (cas: 40856-59-5HPLC of Formula: 40856-59-5).

Boc-L-Homoserine lactone (cas: 40856-59-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.HPLC of Formula: 40856-59-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem