Downstream synthetic route of 13031-04-4

13031-04-4 4,4-Dimethyldihydrofuran-2,3-dione 39, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13031-04-4,4,4-Dimethyldihydrofuran-2,3-dione,as a common compound, the synthetic route is as follows.

Examples 1-4 [00041] The process of the present invention as set forth in FIG. 1 is typically initiated by dissolving the alpha ketocarbonyl compound and the modifier in vessel (1). The resulting solution contains from about 0.1 wt % to about 100 wt % of the alpha ketocarbonyl compound and from about 1¡Á10-5 wt % to about 0.5 wt % of modifier. [00042] The mass flow is started at the reaction temperature, for example, at 17 C. or 20 C. (Examples 1 and 2, respectively). The above solution containing an alpha ketocarbonyl compound and a modifier is pumped into the fixed bed reactor (2) and contacted with hydrogen to start the hydrogenation reaction. Before catalytic runs, the reactor is flushed with nitrogen. [00043] Subsequently, the content of vessel (1) is continuously pumped into the fixed bed reactor. The solution flow rate is preferably from about 0.1 to about 50 ml/minute, the preferred flow of the alpha ketocarbonyl compound is 2¡Á10-5-2¡Á10-2 mol/gcat/minute. More preferably, the solution flow rate is preferably from about 2.5 to about 10 ml/minute, and the flow of the alpha ketocarbonyl compound is from about 2¡Á10-4-3¡Á10-3 mol/gcat/minute. [00044] The modifier flow rate is preferably from about 2¡Á10-9 to about 2¡Á10-4 mol/gcat/minute, such as, for example, from about 2¡Á10-8 to about 7¡Á10-6 mol/gcat/minute. [00045] Hydrogen is continuously fed into the fixed bed reactor via flow line (3) containing a compressor (4) and a pressure control system (5). The inert gas, e.g. nitrogen, is fed into the reactor (2) via line (7). [00046] The hydrogen flow rate into the reactor is metered and monitored by a rotameter. Suitable hydrogen flow rates are from about 0.0001 mol/minute (2.4 ml/minute) to about 1 mol/minute (24000 ml/minute), for example, from about 5¡Á10-6 to about 10 mol/gcat/minute. [00047] The hydrogenation reaction can be carried out at a relatively low temperature ranging between about -20 C. and about 100 C., the preferred temperature range is from about -10 C. to about 50 C., such as for example from about 0 C. to about 20 C. [00048] The pressure in the reactor is suitably adjusted to between about 2 bar and about 150 bar, preferably from about 40 bar to about 100 bar. [00049] The effluent from the hydrogenation reaction zone is fed over a two-step expansion module (6) to a separator where the alpha hydroxy carbonyl compound is recovered. [00050] The process set forth in FIG. 2 is initiated by dissolving the alpha ketocarbonyl compound and the modifier in vessel (1) or by adding a solution containing the modifier to a liquid alpha ketocarbonyl compound. The resulting solution has the following concentration: [00051] about 0.1 wt % to about 100 wt % of alpha ketocarbonyl compound; and [00052] about 1¡Á10-6 wt % to about 0.5 wt % of modifier. [00053] The reactor vessel (2) is charged with a supercritical solvent via flow line (3) containing a compressor (4) and a pressure control system (5). [00054] The organic flow is started at a reaction temperature of, for example, about 50 C. (Example 3) or 36 C. (Example 4). The solution set forth above is pumped into the fixed bed reactor (2) and contacted with hydrogen to start the hydrogenation reaction. [00055] Subsequently, the content of vessel (1) is continuously pumped into the fixed bed reactor with the same solution flow rate as in the process according to FIG. 1. [00056] The flow rate of the supercritical co-solvent is preferably from about 50 ml/minute to about 5000 ml/minute. [00057] When using a liquid alpha ketocarbonyl compound, the supercritical co-solvent is used with a flow rate of about 50 ml/minute to about 5000 ml/minute. [00058] The modifier flow rate is preferably from about 2¡Á10-11 to about 2¡Á10-4 mol/gcat/min. [00059] Hydrogen is continuously fed into the fixed bed reactor via flow line (7) containing a pressure control system (5). The hydrogen flow rate into the reactor was metered and monitored by a rotameter. [00060] Suitable hydrogen flow rates are from about 0.0001 mol/minute (2.4 ml/minute) to about 1 mol/minute (24000 ml/minute) such as for example from 5¡Á10-6 to about 10 mol/gcat/minute. [00061] The hydrogenation reaction can be carried out at a relatively low temperature ranging between about 20 C. to about 100 C., preferably from about 30 C. to about 60 C., such as for example from about 35 C. to about 50 C. The pressure is suitably adjusted to between about 2 bar to about 150 bar, preferably about 40 bar to about 100 bar.

13031-04-4 4,4-Dimethyldihydrofuran-2,3-dione 39, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; Roche Vitamins Inc.; US6646135; (2003); B1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 111769-27-8

111769-27-8 (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate 14243169, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.111769-27-8,(R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

A mixture of (R)-l-(5,6-dichloro-lH-benzo[d]imidazol-2-yl)-N-(tetrahydrofuran-3-yl)- piperidine-4-carboxamide (100 mg, 0.261 mmol) dimethylsulfoxide (2 mL), caesium carbonate (0.392 mmol), 2-iodopyridine (0.783 mmol), 8-hydroxyquinoline (0.104 mmol), polyethylene glycol (0.511 mmol) and copper(I) oxide (0.0522 mmol) was subjected to microwave conditions for two hour at 120C. The reaction mixture was filtered and subjected to preparative hplc(performed on a Gilson-Finnigan ThermoQuest AQA system equipped with a Zorbax SB-C8 (5 muetaiota, 21.2 x 150 mm) column, using methanol/water (0.05 % formic acid) gradients at a flow rate of 15 mL/min with UV (214 or 254 nm) and MS (ESI) detection) to give 30 mg (25 % yield) of (R)- 1 -(5,6-dichloro- 1 -(pyridin-2-yl)- lH-benzo[d]imidazol-2-yl)-N-(tetrahydrofuran-3 – yl)piperidine-4-carboxamide as a pale yellow solid. LC-MS (m/z) 460.3 (M+l).

111769-27-8 (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate 14243169, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; NOVASAID AB; WANNBERG, Johan; ALTERMAN, Mathias; MALM, Johan; WO2012/117062; (2012); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 111769-27-8

111769-27-8 (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate 14243169, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.111769-27-8,(R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

c) Preparation of the intermediate compound (R)-l-(5,6-dichloro-lH-benzo[d]imidazol-2-yl)-N- (tetrahydrofuran-3-yl)piperidine-4-carboxamide l-(5,6-Dichloro-lH-benzo[d]imidazol-2-yl)piperidine-4-carboxylic acid (628 mg, 2.0 mmol), (R)-(+)-tetrahydrofuran-3-amine 4-methylbenzenesulfonate (622 mg, 2.4 mmol), 2-(7-aza-lH- benzotriazole-l-yl)-l,l,3,3-tetramethyluronium hexafluorophosphate (HATU, 912 mg, 2.4 mmol), JV,JV-diisopropylethylamine (Hunig’s base, DIEA, 775 mg, 6.0 mmol) and N5N- dimethylformamide (25 niL) was stirred at room temperature for 100 minutes. The reaction mixure was concentrated in vacuo, the residue purified on column (silica gel, flashchromatography, dichloromethane/methanol, gradient elution 4-20 % methanol) and finally precipitated from chloroform to give 378 mg (49 % yield) of (R)-l-(5,6-dichloro-lH- benzo[d]imidazol-2-yl)-N-(tetrahydrofuran-3-yl)piperidine-4-carboxamide as a white solid. LC- MS (m/z) 382.9 (M+ 1).

111769-27-8 (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate 14243169, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; NOVASAID AB; WANNBERG, Johan; ALTERMAN, Mathias; MALM, Johan; STENBERG, Patric; WESTMAN, Jacob; WALLBERG, Hans; WO2011/23812; (2011); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 453-20-3

The synthetic route of 453-20-3 has been constantly updated, and we look forward to future research findings.

453-20-3, 3-Hydroxytetrahydrofuran is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

3-Hydroxytetrahydrofuran (83.3 muL, 1.03 mmol) was dissolved in methylene chloride(anhydrous, 2 mL) and cooled to 0 0C followed by the addition of triethylamine (166 muL, 1.2 mmol) and methanesulfonyl chloride (88 muL, 1.14 mmol). The reaction mixture was stirred for 16 h while gradually warming to ambient temperature. The reaction was quenched with water, diluted with methylene chloride (20 mL), and the resulting layers were separated. The organic layer was washed with water (2 x 2 mL) and the combined aqueous phases were extracted with methylene chloride (2 x 3 mL). The combined organic phases were washed with brine (2 x 2 mL), dried over Na2SOzI, filtered, and concentrated. The crude product was used directly in the next step.

The synthetic route of 453-20-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; INCYTE CORPORATION; ZHUO, Jincong; METCALF, Brian; WO2008/64157; (2008); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 138498-97-2

The synthetic route of 138498-97-2 has been constantly updated, and we look forward to future research findings.

138498-97-2, 2-(Tetrahydrofuran-3-yl)acetic acid is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a mixture of A-2 (100.00 mg, 691.75 mmol), PYBOP (539.97 mg, 1.04 mmol) in DCM (10.00 mL) was added 2-tetrahydrofuran-3-ylacetic acid (90.02 mg, 691.75 mmol) and DIPEA (362.44 _, 2.08 mmol), and the mixture was stirred at 25 C for 1 hour. The mixture was concentrated to give crude A-11 (800.00 mg), which was used directly without any further purification. LCMS Rt = 0.18 min using Method B, MS ESI calcd. For C10H14CIN4O2 [M+H]+ 257.1, found 257.0.

The synthetic route of 138498-97-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; PRAXIS PRECISION MEDICINES, INC.; REDDY, Kiran; MARTINEZ BOTELLA, Gabriel; GRIFFIN, Andrew, Mark; MARRON, Brian, Edward; (364 pag.)WO2018/98499; (2018); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

5061-21-2, 2-Bromo-4-butanolide is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a suspension of AgOAc (0.25 mmol) in MeCN or DMF (2 mL) was added the alkylhalide (0.25 mmol) dissolved in 1 mL of the corresponding solvent. The reaction mixture was stirred at the temperature indicated on table 1 until starting material was consumed. After that, a saturated solution of NH4Cl (20 mL) was added and the crude mixture was extracted three times with EtOAc (3 x 15 mL). When necessary, the product was purifiedby column chromatography (hexane/EtOAc).

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Article; Nolla-Saltiel, Roberto; Carrillo-Arcos, Ulises Alonso; Porcel, Susana; Synthesis; vol. 46; 2; (2014); p. 165 – 169;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 88675-24-5

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.88675-24-5,Tetrahydrofuran-3-amine,as a common compound, the synthetic route is as follows.

To a stirred solution of 4-chloro-2-fluoropyridine (0.094 g, 0.574 mmol) inDMSO (2 mL) cooled to 0 ¡ãC under a nitrogen atmosphere was added C52CO3 (0.374g, 1.148 mmol) and the mixture was stirred for 5 mm. Tetrahydrofuran-3-amine(0.05 g, 0.574 mmol) was added and the mixture heated to 90 ¡ãC for 14 h. Water was added and the solution was extracted with ethyl acetate (2 x 20 mL). The combined organic layers were washed with water (2×20 mL). The organic layers were dried over sodium sulfate and concentrated under reduced pressure. The residue was purified via silica gel chromatography (ethyl acetate and pet ether) to afford 4-chloro-N-(tetrahydrofuran-3-yl)pyridin-2-amine (0.05 g, 0.209 mmol, 36percent yield) as a yellow oil. LCMS (ESI) m/e 199.2 [(M+H) , calcd for C9H12C1N2O, 199.01; LC/MS retention time (method Al); tR = 1.73 mm.

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; BRONSON, Joanne J.; CHEN, Ling; DITTA, Jonathan L.; DZIERBA, Carolyn Diane; JALAGAM, Prasada Rao; LUO, Guanglin; MACOR, John E.; MAISHAL, Tarun Kumar; NARA, Susheel Jethanand; RAJAMANI, Ramkumar; SISTLA, Ramesh Kumar; THANGAVEL, Soodamani; (318 pag.)WO2017/59080; (2017); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 13031-04-4

13031-04-4 4,4-Dimethyldihydrofuran-2,3-dione 39, aTetrahydrofurans compound, is more and more widely used in various.

13031-04-4, 4,4-Dimethyldihydrofuran-2,3-dione is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The hydrogenations are carried out in 1.2 ml vials. Stirring is effected by intensive shaking.Solutions having a volume of about 0.5 ml and the compositions shown in Table 1 are prepared in the 1.2 ml vials under a nitrogen atmosphere in a glove box. The catalysts are prepared “in situ” by mixing 1 equivalent of the metal precursor with 1.3 equivalents of ligand in dichloroethane and subsequently distilling off the dichloro- ethane under reduced pressure. The substrate is dissolved in the hydrogenation solvent and added as a solution to the catalyst. These vials are fixed in a pressure- rated, heatable vessel, the vessel is closed, the desired temperature is set, the nitrogen atmosphere in the vessel is replaced by hydrogen under the desired pressure and the hydrogenation is started by switching on the shaker.

13031-04-4 4,4-Dimethyldihydrofuran-2,3-dione 39, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; Solvias AG; PUGIN, Benoit; FENG, Xiangdong; LANDERT, Heidi; WO2008/34809; (2008); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Downstream synthetic route of 184950-35-4

184950-35-4 (Tetrahydrofuran-3-yl)methanamine hydrochloride 17750392, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.184950-35-4,(Tetrahydrofuran-3-yl)methanamine hydrochloride,as a common compound, the synthetic route is as follows.

Tetrahydrofuran-3-ylmethylamine hydrochloride (0.24 g, 1.78 mmol) And triethylamine (0.18 g, 1.78 mmol) Was added to chloroform (amylene added product) (10 mL). To the mixture, 5- (2-phenylbenzyl) oxymethylisoxazole-3-carboxylic acid (0.40 g, 1.19 mmol) at room temperature, 1-Hydroxybenzotriazole (0.02 g, 0.18 mmol) And 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (0.34 g, 1.78 mmol) were added, After stirring overnight, Dilute hydrochloric acid was added, It was extracted twice with chloroform. The organic layer was washed with saturated sodium bicarbonate water, After drying with anhydrous sodium sulfate, And concentrated under reduced pressure. The residue was subjected to silica gel column chromatography, Represented by the following equation N- (tetrahydrofuran-3-ylmethyl) -5- (2-phenylbenzyl) oxymethyl isoxazole-3-carboxamide (Hereinafter referred to as present amide compound (116)) 0.40 g was obtained.

184950-35-4 (Tetrahydrofuran-3-yl)methanamine hydrochloride 17750392, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Patent; SUMITOMO CHEMICAL COMPANY LIMITED; SUMITA, YUSUKE; (264 pag.)JP2015/51963; (2015); A;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 5061-21-2

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5061-21-2,2-Bromo-4-butanolide,as a common compound, the synthetic route is as follows.

General procedure: To a stirred mixture of thiols 12a-12k (100 mmol) and K2CO3(27.64 g, 200 mmol) in DMF (120 mL) at room temperaturewas added alpha-bromobutyrolactone (10, 14.85 g, 90 mmol), andthe resulting mixture was stirred at room temperature until thecompletion of reaction as indicated by TLC analysis (typicallywithin 12 h).The reaction mixture was poured into ice-water (400 mL),and the mixture thus obtained was extracted with CH2Cl2 (3 ¡Á100 mL). The combined extracts were washed successively with10% aqueous Na2CO3 (2 ¡Á 100 mL) and 5% brine (3 ¡Á 100 mL),dried over anhydrous Na2SO4 and evaporated on a rotary evaporator to aord a residue, which was purifed by columnchromatography to yield 13a-13k after trituration withEtOAc/n-hexane if the product was a solid.

5061-21-2 2-Bromo-4-butanolide 95463, aTetrahydrofurans compound, is more and more widely used in various.

Reference£º
Article; Zhang, Xiansheng; Wu, Jingwei; Liu, Yuqiang; Xie, Yafei; Liu, Changying; Wang, Jianwu; Zhao, Guilong; Phosphorus, Sulfur and Silicon and the Related Elements; vol. 192; 7; (2017); p. 799 – 811;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem