Downstream synthetic route of 1679-47-6

The synthetic route of 1679-47-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1679-47-6,3-Methyldihydrofuran-2(3H)-one,as a common compound, the synthetic route is as follows.

Typical Procedure: Palladium acetate (45 mg, 0.2 mmol, 0.1 eq.) and R-(+)-BINAP (156 mg, 0.25 mmol, 0.125 eq.) in dry toluene (30 mL, degased with dry nitrogen) were stirred at room temperature under nitrogen for 60 minutes. Aryl bromide (4 mmol, 2.0 eq.) and alpha-methyl-gamma-butyrolactone (2 mmol) were added via syringe. KN(TMS)2 in toluene (0.5 M, 7 mL, 3.5 mmol, 1.75 eq.) was added dropwise and the resultant dark red solution was then stirred at 100-105 C. for 24 hours. The reaction mixture was cooled to room temperature before treating with 1N HCl (15 mL) and water (50 mL). The mixture was extracted with ethyl acetate (3¡Á50 mL) and the combined organic phase was washed with water (25 mL) and brine (40 mL) and dried over MgSO4. After removal of the solvent, the residue was chromatographed on silica gel (heptane: ethyl acetate=8:1?2:1) to afford the product., 1679-47-6

The synthetic route of 1679-47-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Zhang, Tony Yantao; Zhang, Hongbin; Proctor, Christophor Scott; US2003/225282; (2003); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 10374-51-3

As the paragraph descriping shows that 10374-51-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.10374-51-3,5-(Hydroxymethyl)dihydrofuran-2(3H)-one,as a common compound, the synthetic route is as follows.

Example 1 (S)-gamma-Pivaloyloxymethyl-gamma-butyrolactone (V) To a solution of (S)-gamma-hydroxymethyl-gamma-butyrolactone1 Prepared according to the literature procedure: M. Taninguchi, K. Koga, S. Yamada, Tetrahedron, 30 , 3547 (1974).1(40 g, 0.34M) in pyridine (200 mL) was added pivaloyl chloride (46 g, 0.38M) and the mixture was heated at 50C for 5 h under nitrogen. The reaction was cooled to room temperature and MeOH (50 mL) was added. The mixture was then concentrated in vacuo, taken up in CH2Cl2-water. The CH2Cl2 was washed with water, 30% H3PO4, brine, and dried over MgSO4. After removal of the solvent under reduced pressure, the residual oil was chromatographed on silica gel using CH2Cl2 as eluent to give 2 (48 g, 70%) as a colorless oil: 1H NMR (CDCl3) delta 1.15 (s, 9H), 1.9-2.6 (m, 4H), 4.09 (dd, J=4.8, 12.3 Hz, 1H), 2.29 (dd, J=3.3, 12.3 Hz, 1H), 4.7-4.75 (m, 1H)., 10374-51-3

As the paragraph descriping shows that 10374-51-3 is playing an increasingly important role.

Reference£º
Patent; Bristol-Myers Squibb Company; EP502447; (1992); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 4100-80-5

4100-80-5 3-Methyldihydrofuran-2,5-dione 20051, aTetrahydrofurans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4100-80-5,3-Methyldihydrofuran-2,5-dione,as a common compound, the synthetic route is as follows.,4100-80-5

(Step 2) To a solution of the compound obtained in Step 1 (8 g, 22.22 mmol) in dichloromethane (100 mL) was added 3-methyldihydrofuran-2,5-dione (2.78 g, 24.44 mmol) at 0¡ãC, and the mixture was stirred at room temperature for 4 hr. The reaction solution was concentrated under reduced pressure, and the precipitate was triturated with 20percent ethyl acetate/hexane to give a mixture (10.4 g, 98.6percent) of N-(2,4-dimethoxybenzyl)-N-(9-ethyl-9H-carbazol-3-yl)-2-methylsuccinamidic acid and a regioisomer thereof, as a white powder. The regioisomeric mixture was used for the next step without purification._(Step 3) [0537] To a solution of the regioisomeric mixture (10.4 g, 21.94 mmol) obtained in Step 2 in THF (300 mL) was added 2M borane-dimethyl sulfide THF solution (10.75 mL, 21.5 mol) at 0¡ãC, and the mixture was stirred at room temperature for 4 hr. The reaction solution was concentrated under reduced pressure, and the residue was dissolved in ethyl acetate (200 mL). The solution was washed with water (100 mL) and saturated brine (100 mL), and dried, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (solvent; 4percent methanol/dichloromethane) to give a mixture (6 g, 59.4percent) of N-(2,4-dimethoxybenzyl)-N-(9-ethyl-9H-carbazol-3-yl)-4-hydroxy-3-methylbutylamide and a regioisomer thereof, as a white powder. The regioisomeric mixture was used for the next step without further purification.

4100-80-5 3-Methyldihydrofuran-2,5-dione 20051, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; Takeda Pharmaceutical Company Limited; YAMAMOTO, Satoshi; SHIRAI, Junya; FUKASE, Yoshiyuki; TOMATA, Yoshihide; SATO, Ayumu; OCHIDA, Atsuko; YONEMORI, Kazuko; NAKAGAWA, Hideyuki; EP2759533; (2014); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 124391-75-9

124391-75-9, 124391-75-9 (S)-(Tetrahydrofuran-3-yl)methanol 40784875, aTetrahydrofurans compound, is more and more widely used in various fields.

124391-75-9, (S)-(Tetrahydrofuran-3-yl)methanol is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 76: Preparation of 5-[5-Fluoro-2-oxo-l,2-dihydro-indoI-(3Z)- yIidenemcthyl]-2,4-dimethyI-lH-pyrroIe-3-carboxylic acid [(R)-3-oxo-2- (tetrahydro-furan-3-yImethyl)-isoxazolidin-4-yl]-amide76a 76b Stepl : To a solution of 76a (250mg 2.45mmol), TEA (273mg, 2.7mmol) inDCM (2OmL) was added methane sulfonyl chloride (298mg, 2.6mmol) drop-wise at O0C. The mixture was stirred overnight at room temperature. After the reaction was complete, the mixture was washed with Na2CO3 solution. The organic phase was separated and the aqueous phase was extracted by DCM (20mL*3). The organic phase was combined, dried over anhydrous Na2SO4 and evaporated to provide 76b (387mg, 88percent) as an oil.

124391-75-9, 124391-75-9 (S)-(Tetrahydrofuran-3-yl)methanol 40784875, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; XCOVERY, INC.; WO2008/33562; (2008); A2;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Analyzing the synthesis route of 88675-24-5

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

88675-24-5,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.88675-24-5,Tetrahydrofuran-3-amine,as a common compound, the synthetic route is as follows.

A solution of N, N-diisopropylethylamine (3.20 mL, 18.4mmol), l-fluoro-2-nitrobenzene (0.484 mL, 4.59 mmol), and (+)-tetrahydrofuran-3 -amine (400 nig, 4.59 mmol) in 7z-butanol (10 mL) was heated to 180 0C in a microwave reactor. After 20 min, the reaction was allowed to cool to ambient temperature and concentrated. Purification by silica gel chromatography, eluting with a gradient of hexane:EtOAc – 100:0 to 0:100, gave the title compound. MS: mlz = 209 (M + 1).

The synthetic route of 88675-24-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MERCK & CO., INC.; WO2006/31610; (2006); A2;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 21461-84-7

As the paragraph descriping shows that 21461-84-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.21461-84-7,(S)-(+)-5-Oxo-2-tetrahydrofurancarboxylic Acid,as a common compound, the synthetic route is as follows.

To a mixture of(2S)-5-oxotetrahydrofuran-2-carboxylic acid (1.00 kg, 7.69 mol) in DCM (10.00 L) and DMF (1OMO mL) was added (COd)2 (2.93 kg, 23.06 mol) dropwise slowly at 0C under N2. The reaction was stirred at 0 C for 30 minutes, then heated to 25 C and stirred for additional 2 hours, After the reaction was completed, the mixture was concentrated in vacuo at 40 C to afford 1.0 kg of (28)-5-oxotetrahydrofuran-2-carbonyl chloride as a yellow oil whichwas used for the next step directly., 21461-84-7

As the paragraph descriping shows that 21461-84-7 is playing an increasingly important role.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; WANG, Baoxia; WANG, Lisha; YUN, Hongying; ZHENG, Xiufang; (78 pag.)WO2016/180743; (2016); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brief introduction of 42417-39-0

42417-39-0, 42417-39-0 3-Aminodihydrofuran-2(3H)-one hydrochloride 445963, aTetrahydrofurans compound, is more and more widely used in various fields.

42417-39-0, 3-Aminodihydrofuran-2(3H)-one hydrochloride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Synthesis of Butoxy-SHL (1) To a solution of 3,4-dibutoxy-cyclobut-3-ene-1,2-dione (0.120 g, 0.53 mmol) in DMF at rt was added alpha-Amino-gamma-butyrolactone-hydrochloride (0.070 g, 0.38 mmol) and triethylamine (1.5 equiv.) and the mixture refluxed overnight. The completion of the reaction was monitored by TLC for the disappearance of starting material. The reaction was quenched with water and extracted with EtOAc (3*100 mL). The organic layers were collected, washed with brine (2*25 mL), dried over Na2SO4 and concentrated in vacuo. Flash column chromatography (SiO2, 100% EtOAc) yielded compound 1 as a brown solid.

42417-39-0, 42417-39-0 3-Aminodihydrofuran-2(3H)-one hydrochloride 445963, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; SYRACUSE UNIVERSITY; Luk, Yan-Yeung; Narasimhan, Sri Kamesh; Falcone, Eric; US2014/39195; (2014); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 111769-27-8

111769-27-8, The synthetic route of 111769-27-8 has been constantly updated, and we look forward to future research findings.

111769-27-8, (R)-Tetrahydrofuran-3-amine 4-methylbenzenesulfonate is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of l-methyl-5-(2-phenyl-[l,2,4]triazolo[l,5-a]pyridin-7-ylcarbamoyl)-lH-pyrazole-4- carboxylic acid (100 mg, 276 muiotaetaomicron), (R)-tetrahydrofuran-3-ylamine 4-methylbenzenesulfonate (143 mg, 552 muiotaetaomicron), diisopropylethylamine (193 mu, 1.1 mmol) and propylphosphonic anhydride (50% in ethyl acetate, 407 mu, 690 muiotaetaomicron) in tetrahydrofurane (7 ml) is refluxed for 18 hours. The solvent is evaporated and to the residue is added sat. aqueous sodium hydrogencarbonate solution. The mixture is stirred for 20 minutes while a white solid precipitates. The solid is collected by filtration, washed with diethylether and dried affording (R)-l-methyl-N5-(2-phenyl- [l,2,4]triazolo[l,5-a]pyridin-7-yl)-N4-(tetrahydrofuran-3-yl)-lH-pyrazole-4,5-dicarboxamide (114 mg, 95.7%) as a white solid, mp.: > 250C. MS: m/z= 432.3 (M+H+).

111769-27-8, The synthetic route of 111769-27-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; FLOHR, Alexander; GOBBI, Luca; GROEBKE ZBINDEN, Katrin; KOERNER, Matthias; PETERS, Jens-Uwe; WO2012/76430; (2012); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 184950-35-4

The synthetic route of 184950-35-4 has been constantly updated, and we look forward to future research findings.

184950-35-4, (Tetrahydrofuran-3-yl)methanamine hydrochloride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

B. 6-Bromo-N2-((tetrahydrofuran-3-yl)methyl)pyrazine-2,3-diamine.3,5-Dibromopyrazin-2-amine (253 mg, 1 mmol), (tetrahydrofuran-3-yl)methanamine hydrochloride (0.33 g, 2.4 mmol), diisopropylethylamine (0.5 mL), and n-butanol (2 mL) were heated in a Biotage Emrys Optimizer microwave reactor at 200 C for 2 h. The reaction was purified on silica gel column (0-10% methanol in ethyl acetate) to give a tan solid (140 mg, 51% yield). MS (ESI) m/z 303.3 [M+l]+., 184950-35-4

The synthetic route of 184950-35-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; SIGNAL PHARMACEUTICALS, LLC; WO2008/51493; (2008); A2;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Simple exploration of 184950-35-4

The synthetic route of 184950-35-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.184950-35-4,(Tetrahydrofuran-3-yl)methanamine hydrochloride,as a common compound, the synthetic route is as follows.

Production Example 5 (0218) 5-[2-(1-Naphthyloxy)ethyl]pyridine-2-carboxylic acid sodium salt (300 mg, 0.95 mmol) obtained in Reference Production Example 14, (tetrahydrofuran-3-yl)methylamine hydrochloride (176 mg, 1.25 mmol) and 1-hydroxybenzotriazole (14 mg, 0.10 mmol) were added to chloroform (6 mL), and triethylamine (0.29 mL, 2.05 mmol) was further added, then 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (225 mg, 1.18 mmol) was added, and the mixture was stirred at room temperature for 4 hours, and concentrated under reduced pressure conditions. The residue was applied to a silica gel column chromatography to obtain 319 mg of N-(tetrahydrofuran-3-ylmethyl)-5-[2-(1-naphthyloxy)ethyl]pyridine-2-carboxylic acid amide (hereinafter, referred to as Compound of the Present Invention (5).) represented by the following formula. Compound of the Present Invention (5) (0219) 1H-NMR (CDCl3, TMS) delta(ppm): 1.66-1.76 (m, 1H), 2.03-2.14 (m, 1H), 2.56-2.65 (m, 1H), 3.29-3.35 (m, 2H), 3.47-3.54 (m, 2H), 3.58-3.64 (m, 1H), 3.73-3.81 (m, 1H), 3.85-3.95 (m, 2H), 4.38-4.43 (m, 2H), 6.78-6.81 (m, 1H), 7.35-7.37 (m, 1H), 7.41-7.51 (m, 2H), 7.77-7.89 (m, 3H), 8.13-8.22 (m, 3H), 8.57-8.60 (m, 1H)., 184950-35-4

The synthetic route of 184950-35-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Sumitomo Chemical Company, Limited; AWASAGUCHI, Kenichiro; (20 pag.)US2017/144995; (2017); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem