Some tips on 112372-15-3

112372-15-3, The synthetic route of 112372-15-3 has been constantly updated, and we look forward to future research findings.

112372-15-3, Furo[2,3-c]pyridine-2-carboxylic acid is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of trans-N-(4-aminocyclohexyl)-2-(4-chloro-3-fluorophenoxy)acetamide (0.200 g, 0.6 mmol, 1.0 equiv) in DMF (10 mL) was added furo[2,3-c]pyridine-2-carboxylic acid (0.108 g, 0.6 mmol, 1.0 equiv) and HATU (0.456 g, 1.2 mmol, 2.0 equiv) at RT. The reaction mixture was stir for 10 min. DIPEA (0.31 mL, 1.8 mmol, 3.0 equiv) was added and the resultant reaction mixture continued stirring at RT for overnight. Product formation was confirmed by LCMS. The reaction mixture was diluted with water (50 mL) and extracted with ethyl acetate (100 mL¡Á2). Combined organic extracts were washed with water (50 mL¡Á4), dried over anhydrous Na2SO4 and concentrated under reduced pressure to obtain crude which was purified by reversed phase HPLC to obtain trans-N-(4-(2-(4-chloro-3-fluorophenoxy)acetamido)cyclohexyl)furo[2,3-c]pyridine-2-carboxamide (Compound 24-90 mg, 30% Yield) as an off white solid. LCMS: 446 [M+H]+; 1HNMR (400 MHZ, DMSO-d6) delta 9.04 (s, 1H), 8.79 (d, J=7.9 Hz, 1H), 8.47 (d, J=5.3 Hz, 1H), 8.01 (d, J=8.3 Hz, 1H), 7.81 (d, J=5.3 Hz, 1H), 7.60 (s, 1H), 7.50 (t, J=9.0 Hz, 1H), 7.13-7.00 (m, 1H), 6.86 (d, J=8.3 Hz, 1H), 4.51 (s, 2H), 3.78 (br. s., 1H), 3.63 (br. s., 1H), 1.82 (d, J=16.2 Hz, 4H), 1.57-1.30 (m, 4H).

112372-15-3, The synthetic route of 112372-15-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Praxis Biotech LLC; BERNALES, Sebastian; DELGADO OYARZO, Luz Marina; NUNEZ VASQUEZ, Gonzalo Esteban; URETA DIAZ, Gonzalo Andres; PUJALA, Brahmam; PANPATIL, Dayanand; BHATT, Bhawana; CHAKRAVARTY, Sarvajit; US2019/177310; (2019); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 124391-75-9

124391-75-9, 124391-75-9 (S)-(Tetrahydrofuran-3-yl)methanol 40784875, aTetrahydrofurans compound, is more and more widely used in various fields.

124391-75-9, (S)-(Tetrahydrofuran-3-yl)methanol is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Triphenylphosphine (7.7 g, 29.4 mmol) was added to a solution of (tetrahydrofuran-3-yl)methanol (2 g, 19.6 mmol) and carbon tetrabromide (7.7 g, 23.5 mmol) in DCM (30 mL) at 0 C. The reaction was stirred for 2 hours at room temperature. The mixture was poured into water (50 mL) and extracted with dichloromethane (50 mL x3). The organic extracts were combined, dried over anhydrous sodium sulfate, and concentrated. The residue was purified by silica gel column chromatography to give 3- (bromomethyl)tetrahydrofuran (2.0 g, 62% yield).

124391-75-9, 124391-75-9 (S)-(Tetrahydrofuran-3-yl)methanol 40784875, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; NEUROPORE THERAPIES, INC.; STOCKING, Emily M.; WRASIDLO, Wolfgang J.; (175 pag.)WO2019/199864; (2019); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Simple exploration of 17347-61-4

17347-61-4, The synthetic route of 17347-61-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.17347-61-4,2,2-Dimethylsuccinicanhydride,as a common compound, the synthetic route is as follows.

A mixture of N-(3-tert-butyl-phenyl)-6-piperazin-1-yl-nicotinamide (20 mg, 0.06 mmol) in CH2Cl2 (5 mL) was treated with 2,2-dimethylsuccinic anhydride (11 mg, 0.07 mmol). After stirring at rt overnight the solvent was evaporated. The residue was dissolved in a very small volume of CH2Cl2. The product was isolated by precipitation after addition of excess of hexanes (25 mg, Yield: 91percent) HRMS m/z calcd for C26H34N4O4 [M+H]+: 467.2653; Found: 467.2652.

17347-61-4, The synthetic route of 17347-61-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bolin, David Robert; Cheung, Adrian Wai-Hing; Hamilton, Matthew Michael; Marcopulos, Nicholas; McDermott, Lee Apostle; Qian, Yimin; US2010/113782; (2010); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 184950-35-4

184950-35-4 (Tetrahydrofuran-3-yl)methanamine hydrochloride 17750392, aTetrahydrofurans compound, is more and more widely used in various fields.

184950-35-4, (Tetrahydrofuran-3-yl)methanamine hydrochloride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5- (3-chloro-5-fluorobenzyloxymethyl) isoxazole-3-carboxylic acid (1.04 g, 3.6 mmol), Tetrahydrofuran-3-ylmethylamine hydrochloride (0.75 g, 5.5 mmol), Triethylamine (0.76 mL, 5.5 mmol) And 1-hydroxybenzotriazole (0.05 g, 0.4 mmol) Was added to chloroform (amylene added product) (10 mL). To the mixture, 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (0.84 g, 4.4 mmol) was added at room temperature, After stirring overnight, And concentrated under reduced pressure. Dilute hydrochloric acid was added to the residue, And extracted three times with ethyl acetate.The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution, Washed with saturated brine, After drying with anhydrous sodium sulfate, And concentrated under reduced pressure. The residue was subjected to silica gel column chromatography, Represented by the following equation N- (tetrahydrofuran-3-ylmethyl) -5- (3-chloro-5-fluorobenzyloxymethyl) isoxazole-3-carboxamide (Hereinafter referred to as the amide compound (268)) 0.40 g was obtained., 184950-35-4

184950-35-4 (Tetrahydrofuran-3-yl)methanamine hydrochloride 17750392, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; SUMITOMO CHEMICAL COMPANY LIMITED; SUMITA, YUSUKE; (264 pag.)JP2015/51963; (2015); A;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

New learning discoveries about 184950-35-4

184950-35-4 (Tetrahydrofuran-3-yl)methanamine hydrochloride 17750392, aTetrahydrofurans compound, is more and more widely used in various fields.

184950-35-4, (Tetrahydrofuran-3-yl)methanamine hydrochloride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Production Example 138 (0458) 5-(3-Phenoxypropyl)isoxazole-3-carboxylic acid (0.50 g, 2.0 mmol), tetrahydrofuran-3-ylmethylamine hydrochloride (0.33 g, 2.4 mmol), triethylamine (0.25 g, 2.4 mmol) and 1-hydroxybenzotriazole (0.03 g, 0.24 mmol) were added to chloroform (amylene addition product) (5 mL). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (0.46 g, 2.4 mmol) was added to the mixture at room temperature, and the mixture was stirred overnight and then concentrated under reduced pressure. Dilute hydrochloric acid was added to the concentrate, and the mixture was extracted twice with ethyl acetate. The organic layer was washed with saturated saline water, dried over anhydrous sodium sulfate, and then concentrated under reduced pressure. The residue was applied to a silica gel column chromatography to obtain 0.51 g of N-(tetrahydrofuran-3-ylmethyl)-5-(3-phenoxypropyl)isoxazole -3-carboxamide (hereinafter, referred to as Compound of Present Invention (145)) represented by the following formula. 1H-NMR(CDCl3, TMS, delta(ppm)):1.64-1.70(1H, m), 2.04-2.12(1H, m), 2.18-2.22(2H, m), 2.52-2.62(1H, m), 3.03(2H, t), 3.43-3.47 (2H, m), 3.59(1H, dd), 3.76(1H, dd), 3.83-3.94(2H, m), 4.02(2H, t), 6.50(1H, s), 6.88-6.90(2H, m), 6.94-6.98(1H, m), 7.00(1H, s), 7.28-7.30(2H, m), 184950-35-4

184950-35-4 (Tetrahydrofuran-3-yl)methanamine hydrochloride 17750392, aTetrahydrofurans compound, is more and more widely used in various fields.

Reference£º
Patent; Sumitomo Chemical Company, Limited; MITSUDERA, Hiromasa; AWASAGUCHI, Kenichiro; AWANO, Tomotsugu; UJIHARA, Kazuya; EP2952096; (2015); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 17347-61-4

The synthetic route of 17347-61-4 has been constantly updated, and we look forward to future research findings.

17347-61-4, 2,2-Dimethylsuccinicanhydride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 6: Synthesis of 4-(lR,3aS,5aR,5bR,7aR,9S, l laR,l lbR,13aR,13bR)-3a-((R)-2-(5-(4- chloro phenyl)- 1 H-imidazo l-2-yl)pyrro lidine- 1 -carbonyl)-5 a,5b, 8 ,8,11 a-pentamethyl- 1 – (prop- 1 -en-2-yl) icosahydro- 1 H-cyclopenta[a]chrysen-9-yl)oxy)-2,2-dimethyl-4-oxobutanoic acid: [0225] To a stirred solution of (R)-2-(5-(4-chlorophenyl)-lH-imidazol-2- yl)pyrrolidin-l -yl)(( lR,3aS,5aR,5bR,7aR,9S, 11 aR, 1 IbR, 13aR, 13bR)-9-hydroxy- 5a,5b,8,8,l la-pentamethyl-l-(prop-l-en-2-yl)icosahydro-3aH-cyclopenta[a]chrysen-3a- yl)methanone (step 5, 0.300 g, 0.43 mmol, 1.0 eq) and 2,2-dimethyl succinicanhydride (0.22 g, 1.75 mmol, 4.0 eq) in toluene (7.5 mL) was added DMAP (0.10 g, 0.87 mmol, 2.0 eq). The reaction mixture was heated at 90¡ãC for overnight. TLC indicated starting material was consumed and the desired product was observed. The mixture was concentrated under reduced pressure, cooled to 0¡ãC, acidified to pH= 5 with IN HC1 and extracted with CH2CI2. The combined organic extracts were washed with water, dried over Na2S04, filtered and evaporated under reduced pressure. The crude residue was purified by column chromatography by using 2percent methanol: dichloromethane as an eluent to gave the desired product (0.150 g, 43.0percent) as a white solid. H1 NMR (DMSO-d6, 300 MHz): delta 12.16 (s, 1H), 11.67 (s, 1H), 7.74 (d, 2H), 7.48 (s. 1H), 7.36 (d, 2H), 5.04 (s, 1H), 4.54 (d, 2H), 4.36 (t, 1H), 3.78 (s, 1H), 3.56 (bs, 2H), 2.08 (m 1H), 2.38-1.85 (m, 9H), 1.58-1.32 (m, 15H), 1.16 (m, 7H), 0.93-0.87 (m, 10H) and 0.83-0.78 (m, 12H); Mass: [M]+ 814.53 (100percent); HPLC: 89.00percent., 17347-61-4

The synthetic route of 17347-61-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; HETERO RESEARCH FOUNDATION; PANDURANGA REDDY, Adulla; PARTHASARADHI REDDY, Bandi; RATHNAKAR REDDY, Kura; VL SUBRAHMANYAM, Lanka; DAVID KRUPADANAM, Gazula, Levi; VENKATI, Mukkera; SUDHAKAR, Neela; SRINIVAS REDDY, Kallem; WO2014/105926; (2014); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Simple exploration of 16874-33-2

16874-33-2, The synthetic route of 16874-33-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.16874-33-2,Tetrahydrofuran-2-carboxylic acid,as a common compound, the synthetic route is as follows.

General procedure: To a mixture of 26b (100 mg, 0.28 mmol), 3-methoxypropionic acid (31.4 muL, 0.33 mmol), HOBt¡¤H2O (45.2 mg, 0.33 mmol) and Et3N (97 muL, 0.70 mmol) in THF (1.4 mL) was added WSC¡¤HCl (64.1 mg, 0.33 mmol). The mixture was stirred at room temperature for 3 h, and then poured into water and extracted with EtOAc. The organic layer was separated, washed with water and brine, dried over Na2SO4 and concentrated in vacuo. The residue was purified by column chromatography (silica gel, Hexane/EtOAc) to give (6R,7R)-tert-butyl 7-(4-chloro-3-fluorophenyl)-6-((3-methoxypropanamido)methyl)-1,4-oxazepane-4-carboxylate (81 mg, 65percent) as a colorless oil.

16874-33-2, The synthetic route of 16874-33-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Yukawa, Tomoya; Fujimori, Ikuo; Kamei, Taku; Nakada, Yoshihisa; Sakauchi, Nobuki; Yamada, Masami; Ohba, Yusuke; Ueno, Hiroyuki; Takiguchi, Maiko; Kuno, Masako; Kamo, Izumi; Nakagawa, Hideyuki; Fujioka, Yasushi; Igari, Tomoko; Ishichi, Yuji; Tsukamoto, Tetsuya; Bioorganic and Medicinal Chemistry; vol. 24; 14; (2016); p. 3207 – 32174;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 149809-43-8

149809-43-8, The synthetic route of 149809-43-8 has been constantly updated, and we look forward to future research findings.

149809-43-8, ((3R,5R)-5-((1H-1,2,4-Triazol-1-yl)methyl)-5-(2,4-difluorophenyl)tetrahydrofuran-3-yl)methyl 4-methylbenzenesulfonate is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example -3: Preparation of 4-(4-(4-(4-(((3R,5R)-5-((lH-l,2,4-triazol-l-yl)methyl)-5- (2,4-difluorophenyl)tetrahydrofuran-3-yl)methoxy)phenyl)piperazin-l-yl)phenyl)-l- ((2S,3S)-2-(benzyloxy)pentan-3-yl)-lH-l,2,4-triazol-5(4H)-one of the structural formula (III) of crystalline Form B-3 l-((2S,3S)-2-(benzyloxy)pentan-3-yl)-4-(4-(4-(4-hydroxyphenyl)piperazin-l-yl)phenyl)- lH-l,2,4-triazol-5(4H)-one (4.0 Kg, 1.0 eq.) of the structural formula (II) was dissolved in Dimethyl sulfoxide (6.0 vol.) at 25¡À2C under nitrogen and cooled to 15-20 C. 25% aqueous sodium hydroxide solution (1.3 eq.) was added to the reaction mixture and was stirred for 10 minutes. ((3S,5R)-5-((lH-l,2,4-triazol-l-yl)methyl)-5-(2,4- difluorophenyl)tetrahydrofuran-3-yl)methyl 4-methylbenzenesulfonate of the structural formula (I) (4.02 Kg) was added to the reaction mixture and continued to stir for lh at 15- 20 C. Reaction temperature was raised to 28¡À2C and stirred for 45-50 h. Ethyl acetate (5.0 vol.) was added to the reaction mass and cooled to 15-20 C followed by addition of water (5.0 vol.), reaction mass was slowly warmed to 25¡À2C and stirred. Layers were separated; organic layer was collected. Aqueous layer was again extracted with Ethyl acetate (3 vol.). Combined organic layers were washed with water (3 vol.) and organic layer was concentrated partially to contain 5.0 Vol. of Ethyl acetate. Cooled the partially concentrated solution to 25¡À2C and was added n-Heptane (5.0 vol.), stirred at 28¡À2C for 30 min and further diluted with n- Heptane (2.0 vol.) heated to 42¡À2C, stirred for 30 min and then slowly cooled to 28¡À2C and continue to stir at 28¡À2C for 2h. The above mixture was cooled to 0-5 C and stirred for lh. Solid was filtered; washed with Heptane (5 vol.). Dried under VTD at 60+5 C to yield 4-(4-(4-(4-(((3R,5R)-5-((lH-l,2,4-triazol- 1 -yl)methyl)-5-(2,4-difluorophenyl)tetrahydrofuran-3-yl)methoxy)phenyl)piperazin- 1 – yl)phenyl)-l-((2S,3S)-2-(benzyloxy)pentan-3-yl)-lH-l,2,4-triazol-5(4H)-one of the structural formula (III) of crystalline Form B-3 with 96% yield. Characteristic Physico-Chemical Data of Crystalline Form B-3 of the Compound of Structural Formula III Physical appearance: Off-white to white solid X-ray Powder Diffraction Pattern: See Figure 3 and Table 3 DSC: See Figure 4 IR: See Figure 5

149809-43-8, The synthetic route of 149809-43-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BIOCON LIMITED; CHARYULU, Palle, Venkata, Raghavendra; GOWDA, Dharshan, Jakkali, Chandre; RAJMAHENDRA, Shanmughasamy; RAMAN, Manikandan; (41 pag.)WO2017/51342; (2017); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 184950-35-4

The synthetic route of 184950-35-4 has been constantly updated, and we look forward to future research findings.

184950-35-4, (Tetrahydrofuran-3-yl)methanamine hydrochloride is a Tetrahydrofurans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Production Example 52 (0367) 5-Butyl-1,2,4-oxadiazole-3-carboxylic acid (1.36 g, 8 mmol), tetrahydrofuran-3-ylmethylamine hydrochloride (1.65 g, 12 mmol), triethylamine (1.21 g, 12 mmol) and 1-hydroxybenzotriazole (0.11 g, 0.8 mmol) were added to chloroform (amylene addition product) (16 mL). 1-Ethyl-3-(3-dimetrylaminopropyl) carbodiimide hydrochloride (1.83 g, 12 mmol) was added to the mixture at room temperature, and the mixture was stirred overnight. Then, water was added thereto, and the mixture was extracted three times with chloroform. The organic layer was washed with saturated saline water, dried over anhydrous sodium sulfate, and then concentrated under reduced pressure. The residue was applied to a silica gel column chromatography to obtain 0.76 g of N-(tetrahydrofuran-3-ylmethyl)-5-butyl-1,2,4-oxadiazole-3-c arboxamide (hereinafter, referred to as Compound of Present Invention (57)) represented by the following formula. 1H-NMR(CDCl3, TMS, delta(ppm)):0.96(3H, t), 1.38-1.49(2H, m), 1.62-1.73(1H, m), 1.80-1.87(2H, m), 2.05-2.15(1H, m), 2.55-2.67(1H, m), 2.95(2H, t), 3.45-3.55(2H, m), 3.61(1H, dd), 3.73-3.80(1H, m), 3.85(1H, dd), 3.92(1H, td), 7.10(1H, brs), 184950-35-4

The synthetic route of 184950-35-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Sumitomo Chemical Company, Limited; MITSUDERA, Hiromasa; AWASAGUCHI, Kenichiro; AWANO, Tomotsugu; UJIHARA, Kazuya; EP2952096; (2015); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem

Some tips on 97-99-4

As the paragraph descriping shows that 97-99-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.97-99-4,(Tetrahydrofuran-2-yl)methanol,as a common compound, the synthetic route is as follows.

97-99-4, Example 45; N-{(3E)-5-tert-butyl-1-methyl-2-[(2R)-tetrahydrofuran-2-ylmethyl]-1,2-dihydro-3H-pyrazol-3-ylidene}-5-chloro-2-methoxybenzamide; Example 45A; (R)-((tetrahydrofuran-2-yl)methyl)hydrazine dihydrochloride; To (R)-(tetrahydrofuran-2-yl)methanol (4.0 g, 39.2 mmol), di-tert-butyl hydrazine-1,2-dicarboxylate (3.64 g, 15.67 mmol) and triphenylphosphine (15.41 g, 58.7 mmol) in THF (100 mL) was added (E)-di-tert-butyl diazene-1,2-dicarboxylate (13.5 g, 5.87 mmol). The mixture was stirred at ambient temperature for 3 h then diluted with water and extracted with EtOAc (100 mL¡Á2). The organic extract was washed with brine and concentrated. Purification by flash chromatography (silica gel, 5-30% EtOAc/hexane) afforded 10.2 g (82%) of (R)-di-tert-butyl 1-((tetrahydrofuran-2-yl)-methyl)-hydrazine-1,2-dicarboxylate, which was dissolved in a solution of 4M HCl in dioxane (40 mL) and stirred at ambient temperature overnight. The solvent was removed under reduced pressure and ethyl acetate (20 mL) was added with stirring. The solid precipitate was filtered, washed with ether (10 mL) and dried under vacuum to yield 7.8 g (97%) of the title compound as a white solid. 1H NMR (300 MHz, DMSO-d6) delta ppm 1.48-1.63 (m, 1H), 1.73-1.88 (m, 2H), 1.90-2.02 (m, 1H), 2.84-3.01 (m, 2H), 3.61-3.71 (m, 1H), 3.72-3.83 (m, 1H), 3.97-4.08 (m, 1H), 5.76 (br, 5H); MS (ESI) m/z 117 (M+H)+.

As the paragraph descriping shows that 97-99-4 is playing an increasingly important role.

Reference£º
Patent; ABBOTT LABORATORIES; US2010/249129; (2010); A1;,
Tetrahydrofuran – Wikipedia
Tetrahydrofuran | (CH2)3CH2O – PubChem