Vallejo-Garcia, Luz Cristina et al. published their research in Journal of Agricultural and Food Chemistry in 2019 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Formula: C18H32O16

Enzymatic Process Yielding a Diversity of Inulin-Type Microbial Fructooligosaccharides was written by Vallejo-Garcia, Luz Cristina;Rodriguez-Alegria, Maria Elena;Lopez Munguia, Agustin. And the article was included in Journal of Agricultural and Food Chemistry in 2019.Formula: C18H32O16 This article mentions the following:

The specificity of fructooligosaccharides as prebiotics depends on their size and structure, which in turn depend on their origin or the synthesis procedure. In this work we describe the application of an inulosucrase (IslA) from Leuconostoc citreum CW28 to produce high mol. weight inulin from sucrose alongside a com. endoinulinase (Novozym 960) produced by Aspergillus niger for a simultaneous or sequential reaction to synthesize fructooligosaccharides (FOS). The simultaneous reaction resulted in a higher substrate conversion and a wide diversity of FOS when compared to the sequential reaction. A shotgun MS anal. of the com. endoinulinase preparation surprisingly revealed an addnl. enzymic activity: a fructosyltransferase, responsible for the synthesis of FOS from sucrose. Consequentially, the range of FOS obtained in reactions combining inulosucrase from Ln. citreum with the fructosyltransferase and endoinulinase from A. niger with sucrose as substrate may be extended and regulated. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Formula: C18H32O16).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Formula: C18H32O16

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Udomsopagit, Teranart et al. published their research in Biochemical and Biophysical Research Communications in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 470-69-9

Intestinal microbiota transplantation reveals the role of microbiota in dietary regulation of RegIIIβ and RegIIIγ expression in mouse intestine was written by Udomsopagit, Teranart;Miwa, Akiho;Seki, Manami;Shimbori, Emiko;Kadota, Yoshihiro;Tochio, Takumi;Sonoyama, Kei. And the article was included in Biochemical and Biophysical Research Communications in 2020.HPLC of Formula: 470-69-9 This article mentions the following:

RegIIIβ and RegIIIγ are antimicrobial peptides expressed in intestinal epithelial cells. Expression of these peptides is reportedly decreased by high-fat diet (HFD) and increased by indigestible oligosaccharides in mice. Clearly, these dietary regimens change the structure of intestinal microbiota. We employed an intestinal microbiota transplantation (IMT) to test whether diet-induced changes in the expression of these peptides are mediated by gut microbiota. C57BL/6J mice were fed either a normal-fat diet (NFD), a HFD, or a NFD supplemented with or without 1-kestose (KES), an indigestible oligosaccharide. Ileal RegIIIβ and RegIIIγ mRNA levels were lower in mice receiving IMT from HFD-fed mice than in those receiving NFD-fed mice and higher in mice receiving IMT from KES-supplemented mice than in those receiving the mice without KES supplementation. Western blot anal. showed that serum RegIIIβ levels changed in parallel with the ileal mRNA levels. We propose that HFD- and KES-induced changes in the ileal RegIIIβ and RegIIIγ expression and in the circulating RegIIIβ levels are mediated, at least in part, by intestinal microbiota. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9HPLC of Formula: 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Dutra, Maria da Conceicao Prudencio et al. published their research in Food Chemistry in 2021 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.COA of Formula: C18H32O16

Whole, concentrated and reconstituted grape juice: Impact of processes on phenolic composition, “foxy” aromas, organic acids, sugars and antioxidant capacity was written by Dutra, Maria da Conceicao Prudencio;Viana, Arao Cardoso;Pereira, Giuliano Elias;Nassur, Rita de Cassia Mirella Resende;Lima, Marcos dos Santos. And the article was included in Food Chemistry in 2021.COA of Formula: C18H32O16 This article mentions the following:

The concentration and reconstitution processes of grape juices can result in losing compounds associated with beverage quality. In this context, three tanks containing 50,000 L of grape juice were individually concentrated up to 68 Brix using a triple vacuum concentrator. The concentrated juice was reconstituted up to the original Brix of the whole juice (18.4). Phenolic compounds, sugars and organic acids were quantified by high-performance-liquid-chromatog. “Foxy” aromatic compounds were also quantified by gas-chromatog./mass-spectrometry. The concentration and reconstitution process resulted in significant losses (Tukey test, p < 0.01) of trans-caftaric acid, decreasing from 397.08 to 159.14 mg/L, chlorogenic-acid from 34.97 to 8.44 mg/L, aromatic furaneol compound from 9.06 to 1.93 mg/L, as well as total losses for gallic-acid, caffeic-acid, p-coumaric-acid, syringic-acid, hesperidin, pelargonidin-3-glucoside and epicatechin compounds The concentration and reconstitution of grape juice preserved the antioxidant capacity and most of the quantified compounds, with the reconstituted juice having good nutritional quality. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9COA of Formula: C18H32O16).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.COA of Formula: C18H32O16

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Hao, Qingxiu et al. published their research in Journal of Separation Science in 2019 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Name: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Rapid simultaneous quantification of fructooligosaccharides in Morinda officianalis by ultra-high performance liquid chromatography was written by Hao, Qingxiu;Nan, Tiegui;Zhou, Li;Kang, Liping;Guo, Lanping;Yu, Yi. And the article was included in Journal of Separation Science in 2019.Name: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

Many Chinese herbal medicines with tonifying effects contain high levels of inulin fructooligosaccharides. These herbal medicines have high development and utilization value because of their effects against dementia, depression, and oxidative stress; on improving learning and memory ability; and on enhancing immunity. In this study, a method was developed for the separation and simultaneous quantitation of fructose, glucose, sucrose, and ten inulin fructooligosaccharides by ultra-high-performance liquid chromatog. with evaporative light scattering detection within 10 min. Separation was performed on an Amide column with gradient elution. The calibration curves for the 13 constituents showed good linearity (R2 > 0.9991). The limits of detection and quantification were 10.78-33.44 and 35.94-124.81 μg/mL, resp., and the recoveries ranged from 98.90 to 103.67%. This method was successfully used to quantify the 13 constituents in the Chinese herbal medicine Morinda officinalis. The contents of the ten inulin fructooligosaccharides ranged from 56.28 to 60.71%. This method is accurate, rapid and simple and can be used for quant. anal. in the quality control of herbal medicines and functional foods. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Name: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Name: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zhou, Xiaoding et al. published their research in Science of the Total Environment in 2022 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Recommanded Product: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

AgNPs seed priming accelerated germination speed and altered nutritional profile of Chinese cabbage was written by Zhou, Xiaoding;Jia, Xiaorong;Zhang, Zhaohui;Chen, Keyu;Wang, Lianhong;Chen, Huimin;Yang, Zong;Li, Chengdu;Zhao, Lijuan. And the article was included in Science of the Total Environment in 2022.Recommanded Product: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

In this study, the performance of AgNPs-priming (20, 40, and 80 mg/L) on the seed germination, yield, and nutritional quality of Chinese cabbage were evaluated. We found that AgNPs-priming at 20 and 40 mg/L for 15 h significantly accelerated seed germination speed and seedling development. Cabbage seeds primed with different concentrations of AgNPs (0, 20, 40, and 80 mg/L) were then planted in a real soil and allowed to grow for 1 mo in greenhouse. AgNPs-priming at 40 mg/L showed significantly increased cabbage yield by 44.3%. Gas chromatog.-mass spectrometry (GC-MS) combining with sparse partial least squares-discriminant anal. (sPLS-DA) reveals that AgNPs priming altered the metabolite profile of cabbage leaves in a dose-dependent manner, decreasing carbohydrates and increasing nitrogen related compounds This indicates that the metabolic stimulation during germination stage can influence the entire life cycle of cabbage. The nutritional quality of cabbage edible leaves was evaluated by liquid chromatog. with tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS). Results showed that AgNPs-priming at all tested concentrations significantly increased the content of essential amino acids for several folds in cabbage leaves, including alanine, aspartic acid, glutamine, glutamic acid, histidine, isoleucine, leucine, lysine, phenylalanine, proline, serine, threonine, tyrosine, and valine. Meanwhile, AgNPs-priming (40 mg/L) significantly increased iron (Fe) content by 23.8% in cabbage leaves. Ag did not bioaccumulate in edible tissues, indicating the bio-safety of AgNPs-priming. These results suggest that AgNPs-priming is a low-cost and eco-friendly approach to increase crop yield and nutritional quality. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Recommanded Product: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Recommanded Product: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yin, Bo et al. published their research in European Polymer Journal in 2014 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Quality Control of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Glucose esters as biobased PVC plasticizers was written by Yin, Bo;Aminlashgari, Nina;Yang, Xi;Hakkarainen, Minna. And the article was included in European Polymer Journal in 2014.Quality Control of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

Utilization of glucose, produced by liquefaction of cellulose or other abundant biomass sources, as raw material for production of green plasticizers would offer an attractive alternative to traditional phthalate plasticizers. Three glucose hexanoate esters (GHs) were synthesized by one-step reaction and evaluated as green plasticizers for poly(vinyl chloride) (PVC). The esterification was carried out for three different time periods to obtain plasticizers with different number of hexanoate groups, as the degree of substitution could influence the miscibility between PVC and GHs. A fast and powerful laser desorption ionization-mass spectrometry (LDI-MS) method was developed to obtain mol. level structural information of the plasticizer structures. All the GHs showed good miscibility with PVC and the GH blends exhibited better mech. properties, in the form of higher strain at break and lower modulus, as compared to glucose pentaacetate (GPA) and sucrose octaacetate (SOA) blends that were studied in comparison. Altogether the results indicate that the synthesized glucose esters have large potential as green PVC plasticizers and they could be a promising option to overcome the environmental problems caused by phthalate plasticizers. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Quality Control of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Quality Control of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Hwang, Jieun et al. published their research in Nano Energy in 2017 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Category: tetrahydrofurans

New liquid carbon dioxide based strategy for high energy/power density LiFePO4 was written by Hwang, Jieun;Kong, Ki Chun;Chang, Wonyoung;Jo, Eunmi;Nam, Kyungwan;Kim, Jaehoon. And the article was included in Nano Energy in 2017.Category: tetrahydrofurans This article mentions the following:

A liquid carbon dioxide (l-CO2) based coating approach is developed for ultrathin, uniform, and conformal carbon coating of hierarchically mesoporous LiFePO4 (LFP) nano/microspheres for fabricating high-energy-d. and high-power-d. carbon coated LFP (C-LFP) with long-term cyclability. The unique properties of l-CO2 result in an ultrathin carbon layer (1.9 nm) distributed all over the primary nano-sized LFP particles (20-140 nm in diameter), forming a core (LFP)-shell (carbon) structure. This unique structure provides facile penetration of liquid electrolytes and rapid electron and Li-ion transport. C-LFP exhibits high reversible capacity, high energy and power d. (168 mAh g-1 at 0.1 C, 109 Wh kg-1 and 3.3 kW kg-1 at 30 C, resp.) with excellent long-term cyclability (84% cycle retention at 10 C after 1000 cycles). In addition, the ultrathin and uniform carbon layer of the mesoporous microspheres allows a high tap d. (1.4 g cm-3) resulting in a high volumetric energy d. (458 Wh L-1 at a 30 C rate). Furthermore, C-LFP presents a high capacity and stable cycling performance under low-temperature and high-temperature environment. Well-developed carbon coating approach in this study is simple, scalable, and environmentally benign, making it very promising for com.-scale production of electrode materials for large-scale Li-ion battery applications. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Category: tetrahydrofurans).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Miller, Matthew B. et al. published their research in Journal of Supercritical Fluids in 2012 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Product Details of 126-14-7

Solid CO2-philes as potential phase-change physical solvents for CO2 was written by Miller, Matthew B.;Bing, Wei;Luebke, David R.;Enick, Robert M.. And the article was included in Journal of Supercritical Fluids in 2012.Product Details of 126-14-7 This article mentions the following:

The binary phase behavior of mixtures of CO2 and highly CO2-philic solids has been determined at 298 K. The solids include sugar acetates (β-Dgalactose pentaacetate, β-D-ribofuranose tetraacetate, α-D(+)-glucose pentaacetate, D-(+)-sucrose octaacetate), tert-butylated aromatics (2,4-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol, 3,5-di-tert-butylphenol, 1,2,4-triacetoxybenzene), and a highly oxygenated cyclic compound (1,3,5-trioxane). The results are presented in the form of phase behavior (Px) diagrams at 298 K that exhibit either one (vapor-liquid-solid, VLS) or two (vapor-liquid-liquid, VL1L2 and vapor-liquid-solid, VL2S) three-phase equilibrium lines. Ternary phase behavior at 298 K has also been determined and presented in the form of a pseudo-binary Px diagram for mixtures of an equimolar gas blend of CO2 and H2 and each of these CO2-philic solids and several other previously identified highly CO2-philic compounds Only four compounds, sucrose octaacetate, 1,3,5-tri-tert-butylbenzene, 2,4-di-tert-butylbenzene, and 1,3,5-trioxane, melted at 298 K in the presence of the CO2/H2 mixture at three-phase vapor-liquid-solid pressures ranging between 6 MPa and 10 MPa. These four compounds are candidates for the selective absorption of CO2 from a CO2/H2 mixture using solid compounds that can melt and selectively absorb CO2. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Product Details of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Product Details of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wambaugh, John F. et al. published their research in Environmental Science & Technology in 2013 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Related Products of 126-14-7

High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project was written by Wambaugh, John F.;Setzer, R. Woodrow;Reif, David M.;Gangwal, Sumit;Mitchell-Blackwood, Jade;Arnot, Jon A.;Joliet, Olivier;Frame, Alicia;Rabinowitz, James;Knudsen, Thomas B.;Judson, Richard S.;Egeghy, Peter;Vallero, Daniel;Cohen Hubal, Elaine A.. And the article was included in Environmental Science & Technology in 2013.Related Products of 126-14-7 This article mentions the following:

USEPA must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chems. High-throughput screening (HTS) for biol. activity allows the ToxCast research program to prioritize chem. inventories for potential hazard. Similar capabilities to estimate exposure potential would support rapid, risk-based prioritization for chems. with limited information; this work proposes a framework for high-throughput exposure assessment. To demonstrate its application, an anal. was conducted to predict human exposure potential for chems. and estimate prediction uncertainty by comparison with biomonitoring data. In total, 1936 chems. were evaluated using far-field mass balance human exposure models (USEtox, RAIDAR) and an indicator for indoor and/or consumer use. These predictions were compared to exposures inferred by Bayesian anal. of urine concentrations for 82 chems. reported in the National Health and Nutrition Examination Survey (NHANES). Joint regression of all factors provided a calibrated consensus prediction, the variance of which served as an empirical determination of uncertainty to prioritize absolute exposure potential. Information on use was most predictive; generally, chems. above the limit of detection in NHANES had consumer/indoor use. Coupled with hazard HTS, exposure HTS can assign risk earlier in decision processes. High-priority chems. become targets for further data collection. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Related Products of 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Related Products of 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Lemmerer, Miran et al. published their research in Angewandte Chemie, International Edition in 2022 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Formula: C12H20O6

HFIP Mediates a Direct C-C Coupling between Michael Acceptors and Eschenmoser’s salt was written by Lemmerer, Miran;Riomet, Margaux;Meyrelles, Ricardo;Maryasin, Boris;Gonzalez, Leticia;Maulide, Nuno. And the article was included in Angewandte Chemie, International Edition in 2022.Formula: C12H20O6 This article mentions the following:

A direct C-C coupling process that merges Michael acceptors and Eschenmoser’s salt was presented. Although reminiscent of the Morita-Baylis-Hillman reaction, this process requires no Lewis base catalyst. The underlying mechanism was unveiled by a combination of kinetic, isotopic labeling experiments as well as computational investigations, which showcased the critical role of HFIP as a superior mediator for proton-transfer events as well as the decisive role of the halide counterion. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Formula: C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Formula: C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem