Minecka, A. et al. published their research in Journal of Physical Chemistry B in 2020 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.HPLC of Formula: 126-14-7

Influence of the Internal Structure and Intermolecular Interactions on the Correlation between Structural (α) and Secondary (β-JG) Relaxation below the Glass Transition Temperature in Neat Probucol and Its Binary Mixtures with Modified Saccharides was written by Minecka, A.;Tarnacka, M.;Jurkiewicz, K.;Hachula, B.;Kaminski, K.;Paluch, M.;Kaminska, E.. And the article was included in Journal of Physical Chemistry B in 2020.HPLC of Formula: 126-14-7 This article mentions the following:

Broadband dielec. spectroscopy (BDS) has been used to study the mol. dynamics and aging process in neat probucol (PRO) as well as its binary mixtures with selected acetylated saccharides. In particular, we applied the Casalini and Roland approach to determine structural relaxation times in the glassy state of the examined systems (so-called isostructural times, τiso). Next, using the calculated τiso, primitive relaxation times of the coupling model were obtained and compared to the exptl. secondary β (Johari-Goldstein (JG) type) relaxation times. Interestingly, it turned out that there is a correlation between the β-JG and the structural (α)-relaxation processes below the glass transition temperature (T < Tg) in each investigated sample. This is a new observation compared to previous studies demonstrating that such a relationship exists only in the supercooled liquid state of neat PRO. Moreover, it was revealed that the stretching parameters obtained from the aging procedure are very close to the ones determined by fitting the dielec. data above the Tg with the use of the Kohlrausch-Williams-Watts function, indicating that the aging process is governed by the α-relaxation. Complementary Fourier transform IR and X-ray diffraction measurements allowed us to find a possible reason for these findings. It was demonstrated that although there are very weak intermol. interactions between PRO and modified saccharides, the intra- and intermol. structure of PRO is practically unaffected by the presence of modified saccharides. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7HPLC of Formula: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.HPLC of Formula: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kaminska, E. et al. published their research in Molecular Pharmaceutics in 2014 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Impact of Inter- and Intramolecular Interactions on the Physical Stability of Indomethacin Dispersed in Acetylated Saccharides was written by Kaminska, E.;Adrjanowicz, K.;Tarnacka, M.;Kolodziejczyk, K.;Dulski, M.;Mapesa, E. U.;Zakowiecki, D.;Hawelek, L.;Kaczmarczyk-Sedlak, I.;Kaminski, K.. And the article was included in Molecular Pharmaceutics in 2014.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate This article mentions the following:

Differential scanning calorimetry (DSC), broadband dielec. (BDS), and Fourier transform IR (FTIR) spectroscopies as well as theor. computations were applied to investigate inter- and intramol. interactions between the active pharmaceutical ingredient (API) indomethacin (IMC) and a series of acetylated saccharides. It was found that solid dispersions formed by modified glucose and IMC are the least phys. stable of all studied samples. Dielec. measurements showed that this finding is related to neither the global nor local mobility, as the two were fairly similar. On the other hand, combined studies with the use of d. functional theory (DFT) and FTIR methods indicated that, in contrast to acetylated glucose, modified disaccharides (maltose and sucrose) interact strongly with indomethacin. As a result, internal H-bonds between IMC mols. become very weak or are eventually broken. Simultaneously, strong H-bonds between the matrix and API are formed. This observation was used to explain the phys. stability of the investigated solid dispersions. Finally, solubility measurements revealed that the solubility of IMC can be enhanced by the use of acetylated carbohydrates, although the observed improvement is marginal due to strong interactions. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Application In Synthesis of (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Pott, Delphine M. et al. published their research in Food Chemistry in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Product Details of 470-69-9

Metabolic reconfiguration of strawberry physiology in response to postharvest practices was written by Pott, Delphine M.;de Abreu e Lima, Francisco;Soria, Carmen;Willmitzer, Lothar;Fernie, Alisdair R.;Nikoloski, Zoran;Osorio, Sonia;Vallarino, Jose G.. And the article was included in Food Chemistry in 2020.Product Details of 470-69-9 This article mentions the following:

The strawberry fruit is perishable due to its high water content and soft texture, yet exhibits pleasant organoleptic and nutritional profile. Here we conducted a metabolomics-driven anal. followed by linear modeling to dissect the mol. processes in strawberry postharvest. Fruits from five cultivars were harvested and refrigerated during a ten-day period under three different atmospheres: ambient, CO2-enriched and O3-enriched. These analyses revealed that metabolites involved in, (i) organoleptic and nutritional properties; (ii) stress tolerance displayed duration and postharvest treatment-dependent levels. Ozone-enriched atm. appears to counteract postharvest neg. effects, with fruits exhibiting lower levels of fermentative metabolites when compared to fruits kept in an ambient atm. Furthermore, metabolic reconfiguration towards the synthesis of protective metabolites of those fruits can possibly confer enhanced tolerance to postharvest abiotic stresses. Finally, results from the linear modeling identified metabolites which could be used as biomarkers to assess strawberry quality during its postharvest shelf life. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Product Details of 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Product Details of 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Sam Chan, Hau Sun et al. published their research in Journal of the American Chemical Society in 2019 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 582-52-5

Synthesis, Characterization, and Reactivity of Complex Tricyclic Oxonium Ions, Proposed Intermediates in Natural Product Biosynthesis was written by Sam Chan, Hau Sun;Nguyen, Q. Nhu N.;Paton, Robert S.;Burton, Jonathan W.. And the article was included in Journal of the American Chemical Society in 2019.HPLC of Formula: 582-52-5 This article mentions the following:

Reactive intermediates frequently play significant roles in the biosynthesis of numerous classes of natural products although the direct observation of these biosynthetically relevant species is rare. We present here direct evidence for the existence of complex, thermally unstable, tricyclic oxonium ions that have been postulated as key reactive intermediates in the biosynthesis of numerous halogenated natural products from Laurencia species. Evidence for their existence comes from full characterization of these oxonium ions by low-temperature NMR spectroscopy supported by d. functional theory (DFT) calculations, coupled with the direct generation of 10 natural products on exposure of the oxonium ions to various nucleophiles. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5HPLC of Formula: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kranthikumar, Ramagonolla et al. published their research in Organic & Biomolecular Chemistry in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Product Details of 582-52-5

Toward the synthesis of the hypoxia selective anticancer agent BE-43547 A2 was written by Kranthikumar, Ramagonolla. And the article was included in Organic & Biomolecular Chemistry in 2021.Product Details of 582-52-5 This article mentions the following:

A short and enantioselective synthesis of the 19-epi-BE-43547 A2 chiral framework has been achieved in a high yield (no biol. data). The challenging key C15 tertiary stereo-center was derived from D-glucose. The synthetic strategy involves a Julia-Kocienski olefination to install the lipophilic side chain. An efficient protocol for Z to E isomerization of olefin was developed using a novel UV flow reactor. In addition, an unprecedented oxygen mediated hydroboration and the Krapcho decarboxylation of β-keto lactone were observed In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Product Details of 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Product Details of 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Xiang, Jinbao et al. published their research in Nature (London, United Kingdom) in 2019 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.SDS of cas: 582-52-5

Hindered dialkyl ether synthesis with electrogenerated carbocations was written by Xiang, Jinbao;Shang, Ming;Kawamata, Yu;Lundberg, Helena;Reisberg, Solomon H.;Chen, Miao;Mykhailiuk, Pavel;Beutner, Gregory;Collins, Michael R.;Davies, Alyn;Del Bel, Matthew;Gallego, Gary M.;Spangler, Jillian E.;Starr, Jeremy;Yang, Shouliang;Blackmond, Donna G.;Baran, Phil S.. And the article was included in Nature (London, United Kingdom) in 2019.SDS of cas: 582-52-5 This article mentions the following:

Hindered ethers are of high value for various applications; however, they remain an underexplored area of chem. space because they are difficult to synthesize via conventional reactions. Such motifs are highly coveted in medicinal chem., because extensive substitution about the ether bond prevents unwanted metabolic processes that can lead to rapid degradation in vivo. Here we report a simple route towards the synthesis of hindered ethers, in which electrochem. oxidation is used to liberate high-energy carbocations from simple carboxylic acids. These reactive carbocation intermediates, which are generated with low electrochem. potentials, capture an alc. donor under non-acidic conditions; this enables the formation of a range of ethers (more than 80 have been prepared here) that would otherwise be difficult to access. The carbocations can also be intercepted by simple nucleophiles, leading to the formation of hindered alcs. and even alkyl fluorides. This method was evaluated for its ability to circumvent the synthetic bottlenecks encountered in the preparation of 12 chem. scaffolds, leading to higher yields of the required products, in addition to substantial reductions in the number of steps and the amount of labor required to prepare them. The use of mol. probes and the results of kinetic studies support the proposed mechanism and the role of additives under the conditions examined The reaction manifold that we report here demonstrates the power of electrochem. to access highly reactive intermediates under mild conditions and, in turn, the substantial improvements in efficiency that can be achieved with these otherwise-inaccessible intermediates. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5SDS of cas: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.SDS of cas: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Tsuzaki, Marina et al. published their research in Journal of Organic Chemistry in 2022 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Name: (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Etherification via Aromatic Substitution on 1,3-Disubstituted Benzene Derivatives was written by Tsuzaki, Marina;Ando, Shin;Ishizuka, Tadao. And the article was included in Journal of Organic Chemistry in 2022.Name: (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol This article mentions the following:

A method for etherification via aromatic substitution at the ipso-position of an electron-withdrawing group (EWG) that exists at the meta-position of another EWG was developed. To heighten the reactivity of the substitution reaction, t-BuOK solution was added in THF to a mixture of an aromatic substrate, an alc. nucleophile and 18-crown-6-ether in DMF which proved to be a particularly effective sequence. Under the conditions established, aromatic substrates that were difficult to use for substitution reactions such as aryl fluorides were activated with either a bromide or a chloride substituent were aptly converted to corresponding ether products at 25 C. This reaction would potentially be useful to link an alc. to an addnl. functional group through further chem. transformations via the use of a residual bromide or chloride substituent. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Name: (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Name: (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Nobre, C. et al. published their research in Journal of Functional Foods in 2018 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Computed Properties of C18H32O16

In vitro digestibility and fermentability of fructo-oligosaccharides produced by Aspergillus ibericus was written by Nobre, C.;Sousa, S. C.;Silva, S. P.;Pinheiro, A. C.;Coelho, E.;Vicente, A. A.;Gomes, A. M. P.;Coimbra, M. A.;Teixeira, J. A.;Rodrigues, L. R.. And the article was included in Journal of Functional Foods in 2018.Computed Properties of C18H32O16 This article mentions the following:

The bifidogenic potential of fructo-oligosaccharides (FOS) produced by a newly isolated strain – Aspergillus ibericus was studied. Their activity was compared to FOS produced by Aureobasidium pullulans and to a non-microbial com. FOS sample (Raftilose P95). FOS fermentability by a number of probiotic bacteria and their hydrolytic resistance to the simulated harsh conditions of the digestive system was evaluated. Aspergillus ibericus FOS sample effectively promoted probiotic bacteria growth. Overall, microbial-derived FOS promoted greater cellular growth compared to the com. sample. FOS fermentation was both substrate and strain specific. The FOS structural differences identified may explain their distinct assimilation by the probiotics. [Fru(2→6)Glc] (possibly blastose) and a reducing trisaccharide (possibly [Fru(β2→6)Glc(α1↔β2)Fru], neokestose) were only found in microbial-derived FOS samples, while Raftilose P95 was richer in inulobiose/inulotriose. 1-Kestose and nystose were only slightly hydrolyzed in the presence of gastric and intestinal fluid. FOS synthesized by Aspergillus exhibited great potential as food ingredients with likely prebiotic features. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Computed Properties of C18H32O16).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Computed Properties of C18H32O16

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Jeminejs, Andris et al. published their research in Organic & Biomolecular Chemistry in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Electric Literature of C12H20O6

Nucleophile-nucleofuge duality of azide and arylthiolate groups in the synthesis of quinazoline and tetrazoloquinazoline derivatives was written by Jeminejs, Andris;Novosjolova, Irina;Bizdena, Erika;Turks, Maris. And the article was included in Organic & Biomolecular Chemistry in 2021.Electric Literature of C12H20O6 This article mentions the following:

5-Arylthio-tetrazolo[1,5-c]quinazolines (tautomers of 2-arylthio-4-azido-quinazolines) underwent facile nucleophilic aromatic substitution reactions with amines, alcs. and alkylthiols. This, combined with the recently reported arylsulfanyl group dance, provides straightforward access to 4-azido-2-N-, O-, S-substituted quinazolines and/or their tetrazolo tautomers from com. available 2,4-dichloroquinazoline. The azidoazomethine-tetrazole tautomeric equilibrium and the electron-withdrawing character of the fused tetrazolo system plays a central role in the developed transformations. 5-Amino-substituted tetrazolo[1,5-c]quinazolines underwent media-controlled tautomeric equilibrium, which permits them to demonstrate the reactivity traditionally associated with the azido substituent. Furthermore, a method for 5-O-substitited tetrazolo[1,5-a]quinazolines from 2,4-diazidoquinazoline was developed during the structural elucidation of the substitution products. The developed methodol. will facilitate medicinal chem. investigations into quinazoline derivatives and the discovered fluorescent properties of some of the products (e.g., 4-(4-phenyl-1H-1,2,3-triazol-1-yl)-2-(4-methylpiperazin-1-yl)quinazoline: λem. = 461 nm, ΦDCM = 0.89) could serve as a starting point for their further applications in anal. and materials science. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Electric Literature of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Electric Literature of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Watanabe, Ayako et al. published their research in Scientific Reports in 2020 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: 470-69-9

One Kestose supplementation mitigates the progressivedeterioration of glucosemetabolism in type 2 diabetesOLETF rats was written by Watanabe, Ayako;Kadota, Yoshihiro;Kamio, Rina;Tochio, Takumi;Endo, Akihito;Shimomura, Yoshiharu;Kitaura, Yasuyuki. And the article was included in Scientific Reports in 2020.Recommanded Product: 470-69-9 This article mentions the following:

The fructooligosaccharide 1-kestose cannot be hydrolyzed by gastrointestinal enzymes, and is instead fermented by the gut microbiota. Previous studies suggest that 1-kestose promotes increases in butyrate concentrations in vitro and in the ceca of rats. Low levels of butyrate-producing microbiota are frequently observed in the gut of patients and exptl. animals with type 2 diabetes (T2D). However, little is known about the role of 1-kestose in increasing the butyrate-producing microbiota and improving the metabolic conditions in type 2 diabetic animals. Here, we demonstrate that supplementation with 1-kestose suppressed the development of diabetes in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, possibly through improved glucose tolerance. We showed that the cecal contents of rats fed 1-kestose were high in butyrate and harbored a higher proportion of the butyrate-producing genus Anaerostipes compared to rats fed a control diet. These findings illustrate how 1-kestose modifications to the gut microbiota impact glucose metabolism of T2D, and provide a potential preventative strategy to control glucose metabolism associated with dysregulated insulin secretion. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Recommanded Product: 470-69-9).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: 470-69-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem