Ye, Danfeng et al. published their research in Organic Letters in 2019 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Electric Literature of C12H20O6

Cesium Carbonate Catalyzed Esterification of N-Benzyl-N-Boc-amides under Ambient Conditions was written by Ye, Danfeng;Liu, Zhiyuan;Chen, Hao;Sessler, Jonathan L.;Lei, Chuanhu. And the article was included in Organic Letters in 2019.Electric Literature of C12H20O6 This article mentions the following:

A general activated amide to ester transformation catalyzed by Cs2CO3, is reported. Using this approach, esterification proceeds under relatively mild conditions and without the need for a transition metal catalyst. This method exhibits broad substrate scope and represents a practical alternative to existing esterification strategies. The synthetic utility of this protocol is demonstrated via the facile synthesis of crown ether derivatives and the late-stage modification of a representative natural product and several sugars in reasonable yields. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Electric Literature of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Electric Literature of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Laffort, Paul et al. published their research in Open Journal of Physical Chemistry in 2018 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C28H38O19

Updated definition of the three solvent descriptors related to the van der waals forces in solutions was written by Laffort, Paul. And the article was included in Open Journal of Physical Chemistry in 2018.Synthetic Route of C28H38O19 This article mentions the following:

Innovative viewpoint on the older topic of the van der Waals forces, is of interesting and significant issue to be concerned in both the fields related to the fundamental investigation and thus valuable in guiding the new physio-chem. phenomena and processes for both academic research and practical applications. The intermol. Van der Waals forces involved in solutions have been recently deeply reconsidered as far as the solute side is concerned. More precisely, the solute descriptors (or parameters) exptl. established, have been accurately related to mol. features of a Simplified Mol. Topol. In the present study, an equivalent result is reached on the solvent side. Both exptl. parameters have been obtained simultaneously in previous Gas Liquid Chromatog. studies for 121 Volatile Organic Compounds and 11 liquid stationary phases, via an original Multiplicative Matrix Anal. In that exptl. step, five groups of forces were identified, two of hydrogen bonding and three of Van der Waals: 1. dispersion (London), 2. orientation or polarity strictly speaking (Keesom), and 3. induction-polarizability (Debye). At this stage, an attempt of characterization the solvent parameters via the SMT procedure has been limited to those related to the Van der Waals forces, those related to the hydrogen bonding being for now left aside. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Synthetic Route of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Tang, Meizhong et al. published their research in Organic Letters in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.SDS of cas: 582-52-5

Carbosulfenylation of Alkenes with Organozinc Reagents and Dimethyl(methylthio)sulfonium Trifluoromethanesulfonate was written by Tang, Meizhong;Han, Shuxiong;Huang, Shenglan;Huang, Shenlin;Xie, Lan-Gui. And the article was included in Organic Letters in 2020.SDS of cas: 582-52-5 This article mentions the following:

The electrophilic alkylthiolation of alkenes, initiated by dimethyl(methylthio)sulfonium salts and the subsequent addition of various heteronucleophilies has been well-established. Regarding the use of carbon nucleophiles, however, only carefully designed sp-type carbon sources have been successfully applied. We herein present our findings on the methylthiolation of alkenes with dimethyl(methylthio)sulfonium trifluoromethanesulfonate, followed by carbon-carbon bond formation in the presence of organozinc reagents, thus achieving a catalyst-free protocol toward to the carbosulfenylation of alkenes. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5SDS of cas: 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.SDS of cas: 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ji, Yang et al. published their research in Phytomedicine in 2021 | CAS: 470-69-9

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Comparison of effects on colitis-associated tumorigenesis and gut microbiota in mice between Ophiocordyceps sinensis and Cordyceps militaris was written by Ji, Yang;Tao, Tianyi;Zhang, Junmiao;Su, Anxiang;Zhao, Liyan;Chen, Hui;Hu, Qiuhui. And the article was included in Phytomedicine in 2021.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:

Gut microbiota plays an indispensable role in the treatment of inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). As traditional medicinal fungi, previous studies have shown that Ophiocordyceps sinensis could better maintain intestinal health via promoting the growth of probiotics in vitro compared with Cordyceps militaris. However, the detailed pharmacol. activities and clin. efficacy of O. sinensis and C. militaris are still elusive. We aimed to evaluate the different actions of O. sinensis and C. militaris on colitis-associated tumorigenesis in Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS)-treated mice and explore the potential gut microbiota-dependent mechanisms. C57BL/6 mice (Male, 4 wk old) were used to construct the AOM/DSS-induced CAC mice model. The mice were administered with 0.6 mg/g/d O. sinensis or C. militaris for 12 wk. Its worth noting that fecal microbiota transplantation (FMT) and antibiotic treatment were used to investigated the complex interactions between the medicinal fungi, gut microbiota and colonic tumorigenesis. O. sinensis treatment significantly increased the body weight and survival rate, reduced the number of colon tumors, improved the damage of colon epithelial tissue, restored the crypt structure and alleviate the colonic inflammation in AOM/DSS-treated mice. RT-qPCR results indicated that O. sinensis partly regulated the Wnt/β-catenin signaling via alleviating the overexpression of β-catenin, TCF4 and c-Myc genes in adjacent noncancerous tissues. Compared with C. militaris, O. sinensis showed better anti-tumor activity. Gut microbiota anal. revealed that O. sinensis reversed the decline of gut microbiota diversity and the structural disorder induced by AOM/DSS. Spearmans correlation anal. showed that O. sinensis promoted the growth of Parabacteroides goldsteinii and Bifidobacterium pseudolongum PV8-2, which were pos. correlated with the anti-tumor activity and the production of SCFAs. FMT combined with antibiotic treatment showed that horizontal fecal transfer derived from O. sinensis-treated mice improved the intestinal inflammation and alleviated the colitis-associated tumorigenesis, which was consistent with the direct ingestion of O. sinensis. O. sinensis could better attenuate colitis-associated tumorigenesis compared with C. militaris. These effects might be at least partially due to the increased abundance of probiotics, especially P. goldsteinii and B. pseudolongum PV8-2. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Quality Control of (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Guan, Huan-xiang et al. published their research in Tuijin Jishu in 2007 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Computed Properties of C28H38O19

Study on decreasing the burning rate of nitrate ester plasticized polyether propellant was written by Guan, Huan-xiang;Liu, Yun-fei;Yao, Wei-shang;Tan, Hui-min. And the article was included in Tuijin Jishu in 2007.Computed Properties of C28H38O19 This article mentions the following:

Reducing burning rate of nitrate ester plasticized polyether (NEPE) propellant was studied by means of adding some burning rate modifiers and adjusting its composition The results show that burning rate of the propellant can be decreased by enlarging the particle size of AP, reducing the ratio of NG/DEGDN, decreasing the content of AP and adding little content of burning rate modifiers. The burning rate under 7.0 MPa can be reduced to 6.87 mm/s with ratio 1:1:1 of burning rate modifiers glycerol triacetate/polyoxymethylene/sucrose octa-acetate. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7Computed Properties of C28H38O19).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Computed Properties of C28H38O19

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Alex, Catherine et al. published their research in Organic & Biomolecular Chemistry in 2021 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

A versatile approach to the synthesis of glycans containing mannuronic acid residues was written by Alex, Catherine;Visansirikul, Satsawat;Demchenko, Alexei V.. And the article was included in Organic & Biomolecular Chemistry in 2021.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol This article mentions the following:

Reported herein is a new method for a highly effective synthesis of β-glycosides from mannuronic acid donors equipped with the 3-O-picoloyl group. The stereocontrol of glycosylations was achieved by means of the H-bond-mediated aglycon delivery (HAD). The method was utilized for the synthesis of a tetrasaccharide linked via β-(1→3)-mannuronic linkages. We have also investigated 3,6-lactonized glycosyl donors that provided moderate to high β-manno stereoselectivity in glycosylations. A method to achieve complete α-manno stereoselectivity with mannuronic acid donors equipped with 3-O-benzoyl group is also reported. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Safety of (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Makura, Yui et al. published their research in Tetrahedron in 2019 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Related Products of 582-52-5

α-Selective glycosidation of D-tagatofuranose with a 3,4-O-isopropylidene protection was written by Makura, Yui;Ueda, Atsushi;Matsuzaki, Takashi;Minamino, Tetsuo;Tanaka, Masakazu. And the article was included in Tetrahedron in 2019.Related Products of 582-52-5 This article mentions the following:

An α-selective glycosidation reaction of D-tagatofuranose was successfully achieved using 3,4-O-isopropylidene-protected D-tagatofuranose as a glycosyl donor. A variety of glycosyl acceptors, including primary, secondary, and β-amino alcs., and carbohydrates, can be used for this D-tagatofuranosidation reaction with complete α-selectivities and good yields (57-83%). The stereochemistries at the anomeric positions were determined by nuclear Overhauser effect spectroscopic correlations, as well as comparison of the chem. shifts in the 13C NMR spectra. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Related Products of 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Related Products of 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Davila Garcia, Alvaro et al. published their research in Journal of Heterocyclic Chemistry in 2020 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Application of 582-52-5

Synthesis of a truncated tetradenolide was written by Davila Garcia, Alvaro;Bernes, Sylvain;Sartillo-Piscil, Fernando;Meza-Leon, Rosa Luisa. And the article was included in Journal of Heterocyclic Chemistry in 2020.Application of 582-52-5 This article mentions the following:

The enantiopure synthesis of a truncated tetradenolide is presented. Starting from the versatile chiron 7,3-lactone-xylofuranose derivative (7,3-LXF, I), the enantiomerically pure synthesis of the title compound (II) is obtained in six steps with a 40% overall yield. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Application of 582-52-5).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Application of 582-52-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zhao, Qiang et al. published their research in Journal of the American Chemical Society in 2022 | CAS: 582-52-5

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Synthetic Route of C12H20O6

Boryl Radicals Enabled a Three-Step Sequence to Assemble All-Carbon Quaternary Centers from Activated Trichloromethyl Groups was written by Zhao, Qiang;Li, Bin;Zhou, Xi;Wang, Zhao;Zhang, Feng-Lian;Li, Yuanming;Zhou, Xiaoguo;Fu, Yao;Wang, Yi-Feng. And the article was included in Journal of the American Chemical Society in 2022.Synthetic Route of C12H20O6 This article mentions the following:

Here, a straightforward three-step sequence that uses a range of readily accessible activated trichloromethyl groups as the carbon source, the three C-Cl bonds of which were selectively functionalized to introduce three alkyl chains was described. In each step, only a single C-Cl bond was cleaved with the choice of an appropriate Lewis base-boryl radical as the promoter. A vast range of diversely substituted all-carbon quaternary centers could be accessed directly from these activated CCl3 trichloromethyl groups or by simple derivatizations. The use of different alkene traps in each of the three steps enabled facile collections of a large library of products. The utility of this strategy was demonstrated by the synthesis of variants of two drug mols., whose structures could be easily modulated by varying the alkene partner in each step. The results of kinetic and computational studies enabled the design of the three-step reaction and provided insights into the reaction mechanisms. In the experiment, the researchers used many compounds, for example, (3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5Synthetic Route of C12H20O6).

(3aR,5S,6S,6aR)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (cas: 582-52-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Synthetic Route of C12H20O6

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Xu, Min et al. published their research in Guangpu Shiyanshi in 2012 | CAS: 126-14-7

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.SDS of cas: 126-14-7

NMR of sucrose octaacetate was written by Xu, Min;Zhang, Gao;Wang, Min-chang;Qi, Zhu-chai. And the article was included in Guangpu Shiyanshi in 2012.SDS of cas: 126-14-7 This article mentions the following:

The chem. structure of sucrose octaacetate was analyzed by NMR techniques (including 1H NMR, 13C NMR, 1H-1H COSY, HSQC, HMBC), and the signal of H NMR, C NMR was accurately assigned, and the results provided the important basis for synthesis and quality control of sucrose octaacetate. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7SDS of cas: 126-14-7).

(2R,3R,4S,5R,6R)-2-(Acetoxymethyl)-6-(((2S,3S,4R,5R)-3,4-diacetoxy-2,5-bis(acetoxymethyl)tetrahydrofuran-2-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (cas: 126-14-7) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.SDS of cas: 126-14-7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem