Wang, Xuanting et al. published their research in Communications Biology in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Application In Synthesis of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture was written by Wang, Xuanting;Sacramento, Carolina Q.;Jockusch, Steffen;Chaves, Otavio Augusto;Tao, Chuanjuan;Fintelman-Rodrigues, Natalia;Chien, Minchen;Temerozo, Jairo R.;Li, Xiaoxu;Kumar, Shiv;Xie, Wei;Patel, Dinshaw J.;Meyer, Cindy;Garzia, Aitor;Tuschl, Thomas;Bozza, Patricia T.;Russo, James J.;Souza, Thiago Moreno L.;Ju, Jingyue. And the article was included in Communications Biology in 2022.Application In Synthesis of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate The following contents are mentioned in the article:

SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Application In Synthesis of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Application In Synthesis of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Lee, Jihye et al. published their research in Microbiology Spectrum in 2021 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Category: tetrahydrofurans

TMPRSS2 and RNA-dependent RNA polymerase are effective targets of therapeutic intervention for treatment of COVID-19 caused by SARS-CoV-2 variants (B.1.1.7 and B.1.351) was written by Lee, Jihye;Lee, JinAh;Kim, Hyeon Ju;Ko, Meehyun;Jee, Youngmee;Kim, Seungtaek. And the article was included in Microbiology Spectrum in 2021.Category: tetrahydrofurans The following contents are mentioned in the article:

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative agent of the coronavirus disease 2019 (COVID-19) pandemic, and the development of therapeutic interventions is urgently needed. So far, monoclonal antibodies and drug repositioning are the main methods for drug development, and this effort was partially successful. Since the beginning of the COVID-19 pandemic, the emergence of SARS-CoV-2 variants has been reported in many parts of the world, and the main concern is whether the current vaccines and therapeutics are still effective against these variant viruses. Viral entry and viral RNA-dependent RNA polymerase (RdRp) are the main targets of current drug development; therefore, the inhibitory effects of transmembrane serine protease 2 (TMPRSS2) and RdRp inhibitors were compared among the early SARS-CoV-2 isolate (lineage A) and the two recent variants (lineage B.1.1.7 and lineage B.1.351) identified in the United Kingdom and South Africa, resp. Our in vitro anal. of viral replication showed that the drugs targeting TMPRSS2 and RdRp are equally effective against the two variants of concern. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Category: tetrahydrofurans).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ratain, Mark J. et al. published their research in Journal of Clinical Pharmacology in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.SDS of cas: 2492423-29-5

Drug Interactions With a Short Course of Nirmatrelvir and Ritonavir: Prescribers and Patients Beware was written by Ratain, Mark J.;Greenblatt, David J.. And the article was included in Journal of Clinical Pharmacology in 2022.SDS of cas: 2492423-29-5 The following contents are mentioned in the article:

The COVID-19 pandemic has taught us to expect the unexpected. Administration for 2 oral products for the treatment of mild to moderate COVID-19, Pfizer’s combination product, composed of nirmatrelvir 250 mg and ritonavir 100 mg (N+R), and Merck’s molnupiravir both administered over 5 days. While N + R appears to have greater efficacy than molnupiravir, there has been little discussion regarding the unintended consequences of widespread distribution of a ritonavir-containing product. Likewise, the coformulation of N + R enables maintenance of effective antiviral concentrations of nirmatrelvir over a full 24-h period with twice-daily dosing. Food and Drug Administration requires a sufficient set of drug interaction studies, including careful evaluation of the required washout period after completion of the 5-day course. In the interim, providers who choose to prescribe N + R will need to fully understand the implications of initiating a 5-day course of ritonavir. And patients will need to fully understand the risks of taking any drugs (whether or not prescribed) in this context. However, given that many patients who will be seeking N + R have already declined medical recommendations for vaccination, it is likely that some patients will also choose to ignore the warnings regarding the risks of certain concomitant drugs, which include ivermectin, as well as many recreational drugs. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5SDS of cas: 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.SDS of cas: 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Zou, Rongrong et al. published their research in Frontiers in Pharmacology in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Computed Properties of C13H19N3O7

Antiviral efficacy and safety of molnupiravir against omicron variant infection: a randomized controlled clinical trial was written by Zou, Rongrong;Peng, Ling;Shu, Dan;Zhao, Lei;Lan, Jianfeng;Tan, Guoyu;Peng, Jinghan;Yang, Xiangyi;Liu, Miaona;Zhang, Chenhui;Yuan, Jing;Wang, Huxiang;Li, Song;Lu, Hongzhou;Zhong, Wu;Liu, Yingxia. And the article was included in Frontiers in Pharmacology in 2022.Computed Properties of C13H19N3O7 The following contents are mentioned in the article:

The rapid worldwide spread of the Omicron variant of SARS-CoV-2 has unleashed a new wave of COVID-19 outbreaks. The efficacy of molnupiravir, an approved drug, is still unknown in patients infected with the Omicron variant. Evaluated the antiviral efficacy and safety of molnupiravir in patients infected with SARS-CoV-2 Omicron variant, with symptom duration within 5 days. We conducted a randomized, controlled trial involving patients with mild or moderate COVID-19. Patients were randomized to orally receive molnupiravir (800 mg) plus basic treatment or only basic treatment for 5 days (BID). The antiviral efficacy of the drug was evaluated using reverse transcriptase polymerase chain reaction. Results showed that the time of viral RNA clearance (primary endpoint) was significantly decreased in the molnupiravir group (median, 9 days) compared to the control group (median, 10 days) (Log-Rank p = 0.0092). Of patients receiving molnupiravir, 18.42% achieved viral RNA clearance on day 5 of treatment, compared to the control group (0%) (p = 0.0092). On day 7, 40.79%, and 6.45% of patients in the molnupiravir and control groups, resp., achieved viral RNA clearance (p = 0.0004). In addition, molnupiravir has a good safety profile, and no serious adverse events were reported. Molnupiravir significantly accelerated the SARS-CoV-2 Omicron RNA clearance in patients with COVID-19. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Computed Properties of C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Computed Properties of C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Yuexiang et al. published their research in Viruses in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.SDS of cas: 2492423-29-5

Molnupiravir and Its Active Form, EIDD-1931, Show Potent Antiviral Activity against Enterovirus Infections In Vitro and In Vivo was written by Li, Yuexiang;Liu, Miaomiao;Yan, Yunzheng;Wang, Zhuang;Dai, Qingsong;Yang, Xiaotong;Guo, Xiaojia;Li, Wei;Chen, Xingjuan;Cao, Ruiyuan;Zhong, Wu. And the article was included in Viruses in 2022.SDS of cas: 2492423-29-5 The following contents are mentioned in the article:

Enterovirus infections can cause hand, foot, and mouth disease (HFDM), aseptic meningitis, encephalitis, myocarditis, and acute flaccid myelitis, leading to death of infants and young children. However, no specific antiviral drug is currently available for the treatment of this type of infection. The Unites States and United Kingdom health authorities recently approved a new antiviral drug, molnupiravir, for the treatment of COVID-19. In this study, we reported that molnupiravir (EIDD-2801) and its active form, EIDD-1931, have broad-spectrum anti-enterovirus potential. Our data showed that EIDD-1931 could significantly reduce the production of EV-A71 progeny virus and the expression of EV-A71 viral protein at non-cytotoxic concentrations The results of the time-of-addition assay suggest that EIDD-1931 acts at the post-entry step, which is in accordance with its antiviral mechanism. The i.p. administration of EIDD-1931 and EIDD-2801 protected 1-day-old ICR suckling mice from lethal EV-A71 challenge by reducing the viral load in various tissues of the infected mice. The pharmacokinetics anal. indicated that the plasma drug concentration overwhelmed the EC50 for enteroviruses, suggesting the clin. potential of molnupiravir against enteroviruses. Thus, molnupiravir along with its active form, EIDD-1931, may be a promising drug candidate against enterovirus infections. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5SDS of cas: 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.SDS of cas: 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wang, Qianran et al. published their research in Antiviral Research in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C13H19N3O7

In vitro and in vivo efficacy of a novel nucleoside analog H44 against Crimean-Congo hemorrhagic fever virus was written by Wang, Qianran;Cao, Ruiyuan;Li, Liushuai;Liu, Jia;Yang, Jingjing;Li, Wei;Yan, Linjie;Wang, Yanming;Yan, Yunzheng;Li, Jiang;Deng, Fei;Zhou, Yiwu;Wang, Manli;Zhong, Wu;Hu, Zhihong. And the article was included in Antiviral Research in 2022.Synthetic Route of C13H19N3O7 The following contents are mentioned in the article:

Crimean-Congo hemorrhagic fever virus (CCHFV) is a highly pathogenic tick-borne virus that causes fever, hemorrhage, and multi-organ failure, with an average fatality rate of ∼40% in humans. Currently, there are no available vaccines or drugs for the treatment of Crimean-Congo hemorrhagic fever (CCHF). Favipiravir (T-705), a nucleoside analog, protects against CCHFV infection in animal models. Here, we evaluated the anti-CCHFV efficacy of several nucleoside analogs, including some well-known compounds such as remdesivir (GS-5734), EIDD-1931 and its prodrug molnupiravir (EIDD-2801), as well as a novel T-705-derived compound H44. T-705, H44, and EIDD-1931 inhibited CCHFV infection in vitro while GS-5734 had no inhibitory effect. All three nucleoside analogs functioned at the ′′post-entry′′ stage of virus infection. However, EIDD-2801 failed to protect type I interferon receptor knockout (IFNAR)-/- mice from CCHFV infection. H44, similar to T-705, conferred 100% protection to IFNAR-/- mice against lethal CCHFV challenge, even with delayed administration. This study provided in vitro and in vivo data regarding the anti-CCHFV efficacy of different nucleosides and identified a novel compound, H44, as a promising drug candidate for the treatment of CCHFV infection in vivo. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Synthetic Route of C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Oxidations have also proved to be valuable and efficient approaches to chiral tetrahydrofuran derivatives.Synthetic Route of C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Apaydin, Cagla Begum et al. published their research in Current Drug Targets in 2021 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Small-molecule Antiviral Agents in Ongoing Clinical Trials for COVID-19 was written by Apaydin, Cagla Begum;Cinar, Gozde;Cihan-Ustundag, Gokce. And the article was included in Current Drug Targets in 2021.Recommanded Product: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate The following contents are mentioned in the article:

A review. The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Dec. 2019 and has rapidly spread globally. As the confirmed number of cases has reached 83 million worldwide, the potential severity and the deadly complications of the disease requires urgent development of effective drugs for prevention and treatment. No proven effective treatment for this virus currently exists. Most of the antiviral discovery efforts are focused on the repurposing of approved or clin. stage drugs. This review highlights the small-mol. repurposed antiviral agents that are currently under investigation in clin. trials for COVID-19. These include viral polymerase and protease inhibitors remdesivir, galidesivir, favipiravir, ribavirin, sofosbuvir, tenofovir/emtricitabine, baloxavir marboxil, EIDD-2801, lopinavir/ritonavir; virus-/host-directed viral entry and fusion inhibitors arbidol chloroquine/hydroxychloroquine, chlorpromazine, camostat mesylate, nafamostat mesylate, bromhexine and agents with diverse/unclear mechanism of actions as oseltamivir, triazavirin, ivermectin, nitazoxanide, niclosamide and BLD-2660. The published preclin. and clin. data to date on these drugs as well as the mechanisms of action are reviewed. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Recommanded Product: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Do, Thuc Nguyen Dan et al. published their research in Antiviral Research in 2021 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.SDS of cas: 2492423-29-5

A robust SARS-CoV-2 replication model in primary human epithelial cells at the air liquid interface to assess antiviral agents was written by Do, Thuc Nguyen Dan;Donckers, Kim;Vangeel, Laura;Chatterjee, Arnab K.;Gallay, Philippe A.;Bobardt, Michael D.;Bilello, John P.;Cihlar, Tomas;De Jonghe, Steven;Neyts, Johan;Jochmans, Dirk. And the article was included in Antiviral Research in 2021.SDS of cas: 2492423-29-5 The following contents are mentioned in the article:

There are, besides remdesivir, no approved antivirals for the treatment of SARS-CoV-2 infections. To aid in the search for antivirals against this virus, we explored the use of human tracheal airway epithelial cells (HtAEC) and human small airway epithelial cells (HsAEC) grown at the air-liquid interface (ALI). These cultures were infected at the apical side with one of two different SARS-CoV-2 isolates. Each virus was shown to replicate to high titers for extended periods of time (at least 8 days) and, in particular an isolate with the D614G in the spike (S) protein did so more efficiently at 35 °C than 37 °C. The effect of a selected panel of reference drugs that were added to the culture medium at the basolateral side of the system was explored. Remdesivir, GS-441524 (the parent nucleoside of remdesivir), EIDD-1931 (the parent nucleoside of molnupiravir) and IFN (β1 and λ1) all resulted in dose-dependent inhibition of viral RNA and infectious virus titers collected at the apical side. However, AT-511 (the free base form of AT-527 currently in clin. testing) failed to inhibit viral replication in these in vitro primary cell models. Together, these results provide a reference for further studies aimed at selecting SARS-CoV-2 inhibitors for further preclin. and clin. development. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5SDS of cas: 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.SDS of cas: 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Rosenmayr-Templeton, Louise et al. published their research in Therapeutic Delivery in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Formula: C13H19N3O7

An industry update: what’s new in the field of therapeutic delivery was written by Rosenmayr-Templeton, Louise. And the article was included in Therapeutic Delivery in 2022.Formula: C13H19N3O7 The following contents are mentioned in the article:

A review. Summary : This Industry Update provides an overview of the some of the key events in the pharmaceutical world in Dec. 2021. In this month Eli Lilly & Co invested heavily in drug discovery with deals with Regor Therapeutics on metabolic diseases, and Foghorn Therapeutics on cancer and other diseases caused by faults in the regulation of chromatin unpacking and repacking. Treatments for Covid-19 also feature heavily with the emergency authorization of molnupiravir and Paxlovid in the USA, and BiondVax’s collaboration agreement with Max Planck and the University Medical Center, Goettingham on their alpaca-based single-chain antibodies targeting the SARS-CoV-2 spike protein. Lastly, this month brought good news on several diseases with poor prognosis and no or limited treatment options. This included Novartis’s acquisition of Gyroscope and its gene therapy for age-related macular degeneration, Merck’s purchase of Chord Therapeutics and the rights of develop cladribine for generalized myasthenia gravis and neuromyelitis optica spectrum disorders, pos. phase III interim results for UCB’s, Bimzelx, in ankylosing spondylitis and AstraZeneca and Ionis co-development and commercialization deal on eplontersen for transthyretin amyloidosis. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Formula: C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Formula: C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Pokhrel, Lok R. et al. published their research in Drug Delivery and Translational Research | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Category: tetrahydrofurans

Preclinical efficacy and safety of novel SNAT against SARS-CoV-2 using a hamster model was written by Pokhrel, Lok R.;Williams, Frank;Cook, Paul P.;O′Rourke, Dorcas;Murray, Gina;Akula, Shaw M.. And the article was included in Drug Delivery and Translational Research.Category: tetrahydrofurans The following contents are mentioned in the article:

To address the unprecedented global public health crisis due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we designed and developed a novel antiviral nano-drug, called SNAT (Smart Nano-Enabled Antiviral Therapeutic), comprised of taxoid (Tx)-decorated amino (NH2)-functionalized near-at. size pos. charged silver nanoparticles (Tx-[NH2-AgNPs]) that are stable for over 3 years. Using a hamster model, we tested the preclin. efficacy of inhaled SNAT on the body weight, virus titer, and histopathol. of lungs in SARS-CoV-2-infected hamsters, including biocompatibility in human lung epithelium and dermal fibroblasts using lactase dehydrogenase (LDH) and malondialdehyde (MDA) assays. Our results showed SNAT could effectively reverse the body weight loss, reduce the virus load in oral swabs, and improve lung health in hamsters. Furthermore, LDH assay showed SNAT is noncytotoxic, and MDA assay demonstrated SNAT to be an antioxidant, potentially quenching lipid peroxidation, in both the human cells. Overall, these promising pilot preclin. findings suggest SNAT as a novel, safer antiviral drug lead against SARS-CoV-2 infection and may find applications as a platform technol. against other respiratory viruses of epidemic and pandemic potential. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Category: tetrahydrofurans).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem