Zhao, Rong et al. published their research in Combinatorial Chemistry & High Throughput Screening in 2021 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Synthetic Route of C11H13IN4O4

Network Pharmacology and Molecular Docking Approaches to Investigating the Mechanism of Action of Zanthoxylum bungeanum in the Treatment of Oxidative Stress-induced Diseases was written by Zhao, Rong;Zhang, Meng-Meng;Wang, Dan;Peng, Wei;Zhang, Qing;Liu, Jia;Ai, Li;Wu, Chun-Jie. And the article was included in Combinatorial Chemistry & High Throughput Screening in 2021.Synthetic Route of C11H13IN4O4 The following contents are mentioned in the article:

Zanthoxylum bungeanum Maxim., a traditional Chinese herbal medicine, has been reported to possess therapeutic effects on diseases induced by oxidative stress (DOS), such as atherosclerosis and diabetes complication. However, the active components and their related mechanisms are still not systematically reported. The current study was aimed to explore the main active ingredients and their mol. mechanisms of Z. bungeanum for treating DOS using network pharmacol. combined with mol. docking simulation. The active components of Z. bungeanum pericarps, in addition to the interacting targets, were identified from the Traditional Chinese Medicine Systems Pharmacol. (TCMSP) database. These components were filtered using the parameters of oral bioavailability and drug-likeness, and the targets related to DOS were obtained from the Genecards and OMIM database. Furthermore, the overlapping genes were obtained, and a protein-protein interaction was visualized using the STRING database. Next, the Cytoscape software was employed to build a disease/drug/component/target network, Gene Ontol. (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment anal. were performed using R software. Finally, the potential active compounds and their related targets were validated using mol. docking technol. A total of 61 active compounds, 280 intersection genes, and 105 signaling pathways were obtained. Functional enrichment anal. suggested that DOS occurs possibly through the regulation of many biol. pathways, such as AGE-RAGE and HIF-1 signaling pathways. Thirty of the identical target genes showed obvious compact relationships with others in the STRING anal. Three active compounds, quercetin, diosmetin, and beta-sitosterol, interacting with the four key targets, exhibited strong affinities. The findings of this study not only indicate the main mechanisms involving in oxidative stress-induced diseases but also provide the basis for further research on the active components of Z. bungeanum for treating DOS. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Synthetic Route of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Synthetic Route of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Pousinha, Paula A. et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 2010 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Safety of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Predominance of adenosine excitatory over inhibitory effects on transmission at the neuromuscular junction of infant rats was written by Pousinha, Paula A.;Correia, Alexandra M.;Sebastiao, Ana M.;Ribeiro, Joaquim A.. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 2010.Safety of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Adenosine-induced modulation of neuromuscular transmission in young (3-4-wk-old) rats was evaluated. Inhibition of adenosine kinase with iodotubercidin (ITU; 10 μM), which is known to induce adenosine release, enhanced the amplitude of evoked end-plate potentials (EPPs) recorded from innervated diaphragm muscle fibers. This facilitatory effect was transformed into an inhibitory one upon blockade of adenosine A2A receptors with 4-(2-[7-amino-2-(2-furly)[1,2,4]triazolo[2,3-a][1,3,5]triazin5ylamino] ethyl) phenol (ZM 241385) (50 nM); further blockade of adenosine A1 receptors with the selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 10 nM) abolished that inhibition. Adenosine or 2-chloroadenosine (CADO), at submicromolar concentrations, increased the amplitude and the quantal content of EPPs, whereas at low micromolar concentrations they decreased EPP amplitude. Blockade of A1 receptors with DPCPX (10 nM) prevented both excitatory and inhibitory effects, whereas blockade of A2A receptors with ZM241385 (50 nM) prevented only the excitatory effects. DPCPX and ZM241385 also prevented the excitatory effect of the selective A2A receptor agonist 2-[p-(2-carboxyethyl) phenethylamino]-5′-N-ethylcarboxamido adenosine hydrochloride (CGS 21680; 10 nM). CADO (30 nM) also increased neuromuscular transmission in adult (12-16-wk-old) rats. It is suggested that at the motor nerve endings, low extracellular concentrations of adenosine activate both A2A and A1 receptors, but activation of A2A receptors predominates over A1 receptors; the activity of A2A receptors might, however, require coactivation of A1 receptors. This facilitatory action of low concentrations of extracellular adenosine upon acetylcholine release may be particularly relevant at developing neuromuscular junctions, where subtle changes in synaptic levels of acetylcholine might influence synaptic stabilization. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Safety of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Safety of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Iqbal, Jamshed et al. published their research in Electrophoresis in 2006 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Recommanded Product: 24386-93-4

Development of off-line and on-line capillary electrophoresis methods for the screening and characterization of adenosine kinase inhibitors and substrates was written by Iqbal, Jamshed;Burbiel, Joachim C.;Mueller, Christa E.. And the article was included in Electrophoresis in 2006.Recommanded Product: 24386-93-4 The following contents are mentioned in the article:

Fast and convenient CE assays were developed for the screening of adenosine kinase (AK) inhibitors and substrates. In the first method, the enzymic reaction was performed in a test tube and the samples were subsequently injected into the capillary by pressure and detected by their UV absorbance at 260 nm. An MEKC method using borate buffer (pH 9.5) containing 100 mM SDS (Method: A) was suitable for separating alternative substrates (nucleosides). For the CE determination of AMP formed as a product of the AK reaction, a phosphate buffer (pH 7.5 or 8.5) was used and a constant current (95 μA) was applied (Method: B). The methods employing a fused-silica capillary and normal polarity mode provided good resolution of substrates and products of the enzymic reaction and a short anal. time of less than 10 min. To further optimize and miniaturize the AK assays, the enzymic reaction was performed directly in the capillary, prior to separation and quantitation of the product employing electrophoretically mediated microanal. (EMMA, Method: C). After hydrodynamic injection of a plug of reaction buffer (20 mM Tris-HCl, 0.2 mM MgCl2, pH 7.4), followed by a plug containing the enzyme, and subsequent injection of a plug of reaction buffer containing 1 mM ATP, 100 μM adenosine, and 20 μM UMP as an internal standard (I.S.), as well as various concentrations of an inhibitor, the reaction was initiated by the application of 5 kV separation voltage (neg. polarity) for 0.20 min to let the plugs interpenetrate. The voltage was turned off for 5 min (zero-potential amplification) and again turned on at a constant current of -60 μA to elute the products within 7 min. The method employing a polyacrylamide-coated capillary of 20 cm effective length and reverse polarity mode provided good resolution of substrates and products. Dose-response curves and calculated Ki values for standard antagonists obtained by CE were in excellent agreement with data obtained by the standard radioactive assay. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Recommanded Product: 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Recommanded Product: 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem