Wang, Qianqian et al. published their research in Physical Chemistry Chemical Physics in 2021 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Reference of 24386-93-4

Exploring the thermodynamic, kinetic and inhibitory mechanisms of 5-iTU targeting mitotic kinase haspin by integrated molecular dynamics was written by Wang, Qianqian;Zhang, Qinggao;Leung, Elaine Lai Han;Chen, Yingqing;Yao, Xiaojun. And the article was included in Physical Chemistry Chemical Physics in 2021.Reference of 24386-93-4 The following contents are mentioned in the article:

As a human mitotic kinase, haspin is considered as a promising target for various diseases including cancers. However, no inhibitors targeting haspin have entered clin. trials presently. 5-iTU (5-iodotubercidin) is a useful and classical chem. probe for the investigation of haspin activity, but its inhibitory mechanism remains unclear. In this study, integrated mol. dynamics (MD) of conventional MD, extended adaptive biasing force (eABF), random acceleration MD and well-tempered metadynamics were applied to investigate the thermodn. and kinetic features of 5-iTU and three derivatives targeting haspin. To emphasize the importance of gatekeeper Phe605, two haspin mutants (F605Y and F605T) were also built. The results showed that the binding affinity of 5-iTU and haspin was highest in all wild type (WT) systems, relying on the strong halogen aromatic π interaction between 5-iTU and gatekeeper Phe605. Gatekeeper mutations, because of damage to this interaction, led to the rearrangement of water distributions at the binding site and the decrease of 5-iTU residence times. Addnl., compared with the smaller 5-fTU, 5-iTU dissociated from WT haspin with more difficulty through distinct unbinding pathways. These findings will provide crucial guidance for the design and development of novel haspin inhibitors and the rational modification of existing inhibitors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Reference of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Reference of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Chung, Eun Jee et al. published their research in Scientific Reports in 2017 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

AICAR suppresses TNF-α-induced complement factor B in RPE cells was written by Chung, Eun Jee;Efstathiou, Nikolaos E.;Konstantinou, Eleni K.;Maidana, Daniel E.;Miller, Joan W.;Young, Lucy H.;Vavvas, Demetrios G.. And the article was included in Scientific Reports in 2017.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Age related macular degeneration is the leading cause of blindness in the developed world. Although its precise cause remains elusive, dysfunction of the retinal pigment epithelium (RPE) and dysregulation of complement have been implicated in its pathogenesis. The goal of this study was to evaluate the role of an AMP-dependent kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide riboside (AICAR), on tumor necrosis factor alpha (TNF-α) induction of complement factor B (CFB) in RPE cells. We found that AICAR inhibited TNF-α-induced CFB expression in ARPE-19 and human primary RPE cells in a dose-dependent fashion. Treatment of cells with dipyridamole, which blocks AICAR cellular uptake abolished these effects. In contrast, the adenosine kinase inhibitor, 5-iodotubericidin, which inhibits the conversion of AICAR to the direct activator of AMPK, ZMP, did not reverse the effects on TNF-α-induced CFB expression, suggesting AMPK-independent effects. Indeed, knockout of AMPK in RPE cells using Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 did not abolish the inhibitory effects of AICAR on RPE CFB expression. Collectively, our results suggest that AICAR can suppress TNF-α-induced CFB expression in RPE cells in an AMPK-independent mechanism, and could be used as a therapeutic target in certain complement over-activation scenarios. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Recommanded Product: (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Otsuguro, Ken-ichi et al. published their research in Neuropharmacology in 2015 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Product Details of 24386-93-4

An adenosine kinase inhibitor, ABT-702, inhibits spinal nociceptive transmission by adenosine release via equilibrative nucleoside transporters in rat was written by Otsuguro, Ken-ichi;Tomonari, Yuki;Otsuka, Saori;Yamaguchi, Soichiro;Kon, Yasuhiro;Ito, Shigeo. And the article was included in Neuropharmacology in 2015.Product Details of 24386-93-4 The following contents are mentioned in the article:

Adenosine kinase (AK) inhibitor is a potential candidate for controlling pain, but some AK inhibitors have problems of adverse effects such as motor impairment. ABT-702, a non-nucleoside AK inhibitor, shows analgesic effect in animal models of pain. Here, we investigated the effects of ABT-702 on synaptic transmission via nociceptive and motor reflex pathways in the isolated spinal cord of neonatal rats. The release of adenosine from the spinal cord was measured by HPLC. ABT-702 inhibited slow ventral root potentials (sVRPs) in the nociceptive pathway more potently than monosynaptic reflex potentials (MSRs) in the motor reflex pathway. The inhibitory effects of ABT-702 were mimicked by exogenously applied adenosine, blocked by 8CPT (8-cyclopentyl-1,3-dipropylxanthine), an adenosine A1 receptor antagonist, and augmented by EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), an adenosine deaminase (ADA) inhibitor. Equilibrative nucleoside transporter (ENT) inhibitors reversed the effects of ABT-702, but not those of adenosine. ABT-702 released adenosine from the spinal cord, an effect that was also reversed by ENT inhibitors. The ABT-702-facilitated release of adenosine by way of ENTs inhibits nociceptive pathways more potently than motor reflex pathways in the spinal cord via activation of A1 receptors. This feature is expected to lead to good analgesic effects, but, caution may be required for the use of AK inhibitors in the case of ADA dysfunction or a combination with ENT inhibitors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Product Details of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Product Details of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ashraf, Omar et al. published their research in Neuropharmacology in 2021 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 24386-93-4

Suppression of phrenic nerve activity as a potential predictor of imminent sudden unexpected death in epilepsy (SUDEP) was written by Ashraf, Omar;Huynh, Trong;Purnell, Benton S.;Murugan, Madhuvika;Fedele, Denise E.;Chitravanshi, Vineet;Boison, Detlev. And the article was included in Neuropharmacology in 2021.Reference of 24386-93-4 The following contents are mentioned in the article:

Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacol. suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p lt 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Reference of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF) is a Lewis base that bonds to a variety of Lewis acids such as I2, phenols, triethylaluminum and bis(hexafluoroacetylacetonato)copper(II). THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Reference of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Krishna, Sankar N. et al. published their research in PLoS One in 2013 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Product Details of 24386-93-4

A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4 was written by Krishna, Sankar N.;Luan, Chi-Hao;Mishra, Rama K.;Xu, Li;Scheidt, Karl A.;Anderson, Wayne F.;Bergan, Raymond C.. And the article was included in PLoS One in 2013.Product Details of 24386-93-4 The following contents are mentioned in the article:

Prostate cancer (PCa) is the second highest cause of cancer death in United States males. If the metastatic movement of PCa cells could be inhibited, then mortality from PCa could be greatly reduced. Mitogen-activated protein kinase kinase 4 (MAP2K4) has previously been shown to activate pro-invasion signaling pathways in human PCa. Recognizing that MAP2K4 represents a novel and validated therapeutic target, we sought to develop and characterize an efficient process for the identification of small mols. that target MAP2K4. Using a fluorescence-based thermal shift assay (FTS) assay, we first evaluated an 80 compound library of known kinase inhibitors, thereby identifying 8 hits that thermally stabilized MAP2K4 in a concentration dependent manner. We then developed an in vitro MAP2K4 kinase assay employing the biol. relevant downstream substrates, JNK1 and p38 MAPK, to evaluate kinase inhibitory function. In this manner, we validated the performance of our initial FTS screen. We next applied this approach to a 2000 compound chem. diverse library, identified 7 hits, and confirmed them in the in vitro kinase assay. Finally, by coupling our structure-activity relationship data to MAP2K4’s crystal structure, we constructed a model for ligand binding. It predicts binding of our identified inhibitory compounds to the ATP binding pocket. Herein we report the creation of a robust inhibitor-screening platform with the ability to inform the discovery and design of new and potent MAP2K4 inhibitors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Product Details of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Product Details of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Acharya, Munjal M. et al. published their research in Scientific Reports in 2017 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Category: tetrahydrofurans

Epigenetic determinants of space radiation-induced cognitive dysfunction was written by Acharya, Munjal M.;Baddour, Al Anoud D.;Kawashita, Takumi;Allen, Barrett D.;Syage, Amber R.;Nguyen, Thuan H.;Yoon, Nicole;Giedzinski, Erich;Yu, Liping;Parihar, Vipan K.;Baulch, Janet E.. And the article was included in Scientific Reports in 2017.Category: tetrahydrofurans The following contents are mentioned in the article:

Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The mol. mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation In addition to protecting against those mol. effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Category: tetrahydrofurans).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ugarkar, Bheemarao G. et al. published their research in Journal of Medicinal Chemistry in 2003 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Quality Control of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Adenosine Kinase Inhibitors. 3. Synthesis, SAR, and Antiinflammatory Activity of a Series of L-Lyxofuranosyl Nucleosides was written by Ugarkar, Bheemarao G.;Castellino, Angelo J.;DaRe, Jay S.;Ramirez-Weinhouse, Michele;Kopcho, Joseph J.;Rosengren, Sanna;Erion, Mark D.. And the article was included in Journal of Medicinal Chemistry in 2003.Quality Control of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Chronic inflammatory diseases, such as arthritis and rheumatoid arthritis, remain major health problems worldwide. We previously demonstrated that adenosine kinase inhibitors (AKIs) exhibit antiinflammatory effects by inhibiting TNF-α production, neutrophil accumulation, and edema formation. Although adenosine receptor agonists produce similar effects, AKIs showed the antiinflammatory activity without the cardiovascular side effects that prevented the development of adenosine receptor specific agonists. However, previously described potent AKIs, such as 5-iodotubercidin, are nucleosides which have the potential to undergo in vivo 5′-O-phosphorylation and therefore produce cytotoxicity. In an effort to eliminate toxicities produced by phosphorylated nucleosides, L-lyxofuranosyl analogs of tubercidin were tested as potential AKIs since the opposite stereochem. orientation of the CH2OH was expected to eliminate intracellular phosphorylation. Described herein are the discovery of a new series of AKIs based on α-L-lyxofuranosyl nucleosides, their SAR, as well as the antiinflammatory activity of the lead compound GP790 (IC50 = 0.47 nM, 47% inhibition of paw swelling at 10 mg/kg in rat carrageenan paw edema model). In addition, a study showing that in the skin lesion model the antiinflammatory activity is reversed by an A2 selective adenosine receptor antagonist 3,7-dimethyl-1-propylxanthine (DMPX) is also described. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Quality Control of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofuran and dihydrofuran form the basic structural unit of many naturally occurring scaffolds like gambieric acid A and ciguatoxin, goniocin, and some biologically active molecules. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Quality Control of (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Lebakken, Connie S. et al. published their research in Journal of Biomolecular Screening in 2009 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Synthetic Route of C11H13IN4O4

Development and applications of a broad-coverage, TR-FRET-based kinase binding assay platform was written by Lebakken, Connie S.;Riddle, Steven M.;Singh, Upinder;Frazee, W. Jack;Eliason, Hildegard C.;Gao, Yi;Reichling, Laurie J.;Marks, Bryan D.;Vogel, Kurt W.. And the article was included in Journal of Biomolecular Screening in 2009.Synthetic Route of C11H13IN4O4 The following contents are mentioned in the article:

The expansion of kinase assay technologies over the past decade has mirrored the growing interest in kinases as drug targets. As a result, there is no shortage of convenient, fluorescence-based methods available to assay targets that span the kinome. The authors recently reported on the development of a non-activity-based assay to characterize kinase inhibitors that depended on displacement of an Alexa Fluor 647 conjugate of staurosporine (a “tracer”) from a particular kinase. Kinase inhibitors were characterized by a change in fluorescence lifetime of the tracer when it was bound to a kinase relative to when it was displaced by an inhibitor. Here, the authors report on improvements to this strategy by reconfiguring the assay in a time-resolved fluorescence resonance energy transfer (TR-FRET) format that simplifies instrumentation requirements and allows for the use of a substantially lower concentration of kinase than was required in the fluorescence-lifetime-based format. The authors use this new assay to demonstrate several aspects of the binding assay format that are advantageous relative to traditional activity-based assays. The TR-FRET binding format facilitates the assay of compounds against low-activity kinases, allows for the characterization of type II kinase inhibitors either using nonactivated kinases or by monitoring compound potency over time, and ensures that the signal being detected is specific to the kinase of interest and not a contaminating kinase. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Synthetic Route of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Synthetic Route of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Dubey, Raghvendra K. et al. published their research in Hypertension in 2020 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Reference of 24386-93-4

Adenosine, Via A2B Receptors, Inhibits Human (P-SMC) Progenitor Smooth Muscle Cell Growth was written by Dubey, Raghvendra K.;Baruscotti, Isabella;Stiller, Ruth;Fingerle, Juergen;Gillespie, Delbert G.;Mi, Zaichuan;Leeners, Brigitte;Imthurn, Bruno;Rosselli, Marinella;Jackson, Edwin K.. And the article was included in Hypertension in 2020.Reference of 24386-93-4 The following contents are mentioned in the article:

Here, we investigated whether adenosine reduces P-SMC migration and proliferation and whether this contributes to adenosine’s inhibitory actions on neointima formation. In human P-SMCs, 2-chloroadenosine (stable adenosine analog) and BAY60-6583 (A2B agonist) inhibited P-SMC proliferation and migration. Likewise, increasing endogenous adenosine by blocking adenosine metabolism with erythro-9-(2-hydroxy-3-nonyl) adenine (inhibits adenosine deaminase) and 5-iodotubercidin (inhibits adenosine kinase) attenuated P-SMC proliferation and migration. Neither N-cyclopentyladenosine (A1 agonist), CGS21680 (A2A agonist), nor N-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (A3 agonist) affected P-SMC proliferation or migration. 2-Chloroadenosine increased cAMP, reduced Akt phosphorylation (activates cyclin D expression), and reduced levels of cyclin D1 (promotes cell-cycle progression). A2B receptor knockdown prevented the effects of 2-chloroadenosine on cAMP production and P-SMC proliferation and migration. Likewise, inhibition of adenylyl cyclase and protein kinase A rescued P-SMCs from the inhibitory effects of 2-chloroadenosine. Adenosine inhibits P-SMC migration and proliferation via the A2B receptor/cAMP/protein kinase A axis, which reduces cyclin D1 expression and activity via inhibiting Akt phosphorylation and Skp2 expression and upregulating p27 levels. Adenosine attenuates neointima formation in part by inhibiting infiltration and proliferation of c-Kit+ P-SMCs. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Reference of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Reference of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Garcia-Villafranca, Javier et al. published their research in Biochemical Pharmacology in 2002 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 24386-93-4

Effects of 5-iodotubercidin on hepatic fatty acid metabolism mediated by the inhibition of acetyl-CoA carboxylase was written by Garcia-Villafranca, Javier;Castro, Jose. And the article was included in Biochemical Pharmacology in 2002.HPLC of Formula: 24386-93-4 The following contents are mentioned in the article:

Diverse mechanisms of action have been proposed for 5-iodotubercidin, although it is widely used as an adenosine kinase inhibitor that consequently interferes with the metabolism of adenosine and adenine nucleotides. Incubation of rat hepatocytes with iodotubercidin produced important effects on lipid metabolism Both acetyl-CoA carboxylase and fatty acid synthesis de novo were inhibited in parallel by iodotubercidin, with no change in the activity of fatty acid synthase. The inhibition of both activities showed a comparable dependence on iodotubercidin concentration and was accompanied by a similar decrease (about 60%) in the intracellular malonyl-CoA concentration Iodotubercidin stimulated palmitate oxidation, although octanoate oxidation was unaffected. However, this effect can be attributed to the decrease of malonyl-CoA concentration and the concomitant relief of the inhibition of carnitine palmitoyltransferase I, because the activity of this enzyme was found unaltered when determined in cells permeabilized with digitonin. Iodotubercidin also inhibited cholesterol synthesis de novo. Results, thus, indicate that iodotubercidin increases fatty acid oxidation activity of the liver at the expense of lipogenesis, and we suggest that these effects on fatty acid metabolism are mediated by the inhibition of acetyl-CoA carboxylase, probably due to a more than twice increase in the AMP/ATP ratio and the concomitant stimulation of the AMP-activated protein kinase. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4HPLC of Formula: 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem