Bentley, Mark C.’s team published research in Analytical and Bioanalytical Chemistry in 2020 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Formula: C4H6O3

《Comprehensive chemical characterization of the aerosol generated by a heated tobacco product by untargeted screening》 was written by Bentley, Mark C.; Almstetter, Martin; Arndt, Daniel; Knorr, Arno; Martin, Elyette; Pospisil, Pavel; Maeder, Serge. Formula: C4H6O3 And the article was included in Analytical and Bioanalytical Chemistry on April 30 ,2020. The article conveys some information:

Abstract: A suite of untargeted methods has been applied for the characterization of aerosol from the Tobacco Heating System 2.2 (THS2.2), a heated tobacco product developed by Philip Morris Products S.A. and commercialized under the brand name IQOS. A total of 529 chem. constituents, excluding water, glycerin, and nicotine, were present in the mainstream aerosol of THS2.2, generated by following the Health Canada intense smoking regimen, at concentrations ≥ 100 ng/item. The majority were present in the particulate phase (n = 402), representing more than 80% of the total mass determined by untargeted screening; a proportion were present in both particulate and gas-vapor phases (39 compounds). The identities for 80% of all chem. constituents (representing > 96% of the total determined mass) were confirmed by the use of authentic anal. reference materials. Despite the uncertainties that are recognized to be associated with aerosol-based untargeted approaches, the reported data remain indicative that the uncharacterized fraction of TPM generated by THS2.2 has been evaluated to the fullest practicable extent. To the best of our knowledge, this work represents the most comprehensive chem. characterization of a heated tobacco aerosol to date. In addition to this study using 3-Hydroxydihydrofuran-2(3H)-one, there are many other studies that have used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Formula: C4H6O3) was used in this study.

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Formula: C4H6O3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Zhanchao’s team published research in Chemical Research in Chinese Universities in 2019 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.HPLC of Formula: 19444-84-9

Li, Zhanchao; Zhang, Zhiquan; Wu, Lijie; Zhang, Hanqi; Wang, Ziming published their research in Chemical Research in Chinese Universities on February 28 ,2019. The article was titled 《Characterization of Five Kinds of Wood Vinegar Obtained from Agricultural and Forestry Wastes and Identification of Major Antioxidants in Wood Vinegar》.HPLC of Formula: 19444-84-9 The article contains the following contents:

Wood vinegar(WV) has a powerful antioxidant activity, but it is unclear which components are responsi-ble for the antioxidant activity. In the present study, the double-column retention index qual. method was used for the identification of the major components in five kinds of WV. And the major antioxidants of wood vinegar were accurately identified with the aid of Pearson product-moment correlation coefficients and authentic standard samples. Our results demonstrate that phenolic compounds are mainly responsible for the powerful antioxidant activity. 2,6-Dimethoxyphenol is the most powerful antioxidant in WV. 2-Methoxyphenol and 3-methyl-1,2-cyclopentane-dione also have an important influence on the antioxidant activity of WV. Our results suggest that the contents of 2-methoxyphenol, 2,6-dimethoxyphenol and 3-methyl-1,2-cyclopentanedione should act as the criteria for evaluating the antioxidant activity of WV. Our work will provide useful information for WV’s application in the fields of food and medicine as antioxidants. In the experiment, the researchers used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9HPLC of Formula: 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.HPLC of Formula: 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Rodriguez-Seoane, Paula’s team published research in Waste and Biomass Valorization in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.SDS of cas: 19444-84-9

《Hydrothermal Extraction of Valuable Components from Leaves and Petioles from Paulownia elongata x fortunei》 was written by Rodriguez-Seoane, Paula; del Pozo, Cristina; Puy, Neus; Bartroli, Jordi; Dominguez, Herminia. SDS of cas: 19444-84-9 And the article was included in Waste and Biomass Valorization on August 31 ,2021. The article conveys some information:

Abstract: The leaves and petioles of Paulownia elongata x fortunei are residual fractions from the tree plantations com. destined to the production of wood and their valorization could contribute to the rational utilization of this resource. The saccharidic fraction is the most abundant in both parts of the plant and the sugar profile is very similar, but the ethanol extractives are more abundant in leaves. Non isothermal processing was selected since it provided better results than isothermal extraction with shorter times. For this reason, optimization of autohydrolysis under non isothermal operation (140-240°C) was performed for both materials: leaves and petioles. The final autohydrolysis temperature highly influenced the saccharidic, proteic, phenolic and volatile composition of the extracts Operating under selected conditions leaves provided extracts with more antioxidant compounds than petioles. The proposed technol. provides a variety of com. valuable components, which could contribute to the integral use of this energetic crop following a biorefinery approach. Graphic Abstract: [graphic not available: see fulltext]. In the part of experimental materials, we found many familiar compounds, such as 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9SDS of cas: 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.SDS of cas: 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Remon, Javier’s team published research in ACS Sustainable Chemistry & Engineering in 2019 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.HPLC of Formula: 19444-84-9

HPLC of Formula: 19444-84-9On October 7, 2019 ,《Toward Renewable-Based, Food-Applicable Prebiotics from Biomass: A One-Step, Additive-Free, Microwave-Assisted Hydrothermal Process for the Production of High Purity Xylo-oligosaccharides from Beech Wood Hemicellulose》 was published in ACS Sustainable Chemistry & Engineering. The article was written by Remon, Javier; Li, Tianzong; Chuck, Christopher J.; Matharu, Avtar S.; Clark, James H.. The article contains the following contents:

Xylooligosaccharides (XOS) produced from biomass offer a plethora of excellent physicochem. and physiol. properties to be used as natural prebiotic nutraceuticals. Herein, this work first addresses and optimizes a novel one-pot, additive-free, microwave-assisted process to produce high purity XOS from beech wood hemicellulose, studying the influence of the temperature, reaction time, and solid loading. These variables exerted a significant influence, allowing the transformation of hemicellulose into a gas (0-19%), an XOS-rich liquid product (9-80%) and a spent solid material (17-90%). The liquid phase consisted of a mixture of XOS with a d.p. (DP) DP > 6 (75-100 C-weight %) and DP 3-6 (0-10 C-weight %), together with mono/disaccharides (0-1 C-weight %), carboxylic acids (0-5 C-weight %), ketones (0-12 C-weight %) and furans (0-12 C-weight %). A good compromise between the liquid yield (81%) and XOS purity (96 C-weight %) was achieved at 172 °C using a solid loading of 5 weight % for 47 min. This time could be reduced (33 min) and the solid loading increased (25 weight %) without substantially altering the XOS (98 C-weight %) purity, although the liquid yield was reduced. The liquid yield could be increased up to 97% at the expenses of XOS purity (90 C-weight %) at 177 °C using a 5 weight % solid loading for 60 min. For these optima, the microwave production costs shifted between 1.42 and 6.50 euro/kg XOS, which is substantially lower than the XOS market price, thus highlighting the high potential of this emerging technol. Novel microwave-assisted hydrothermal process assessed and optimized for the production of food-applicable prebiotic nutraceuticals from beech wood hemicellulose.3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9HPLC of Formula: 19444-84-9) was used in this study.

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.HPLC of Formula: 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Bartoszewicz, Agnieszka’s team published research in Journal of the American Chemical Society in 2019 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Product Details of 19444-84-9

Product Details of 19444-84-9On September 18, 2019 ,《Enantioconvergent Alkylations of Amines by Alkyl Electrophiles: Copper-Catalyzed Nucleophilic Substitutions of Racemic α-Halolactams by Indoles》 was published in Journal of the American Chemical Society. The article was written by Bartoszewicz, Agnieszka; Matier, Carson D.; Fu, Gregory C.. The article contains the following contents:

Transition-metal catalysis has the potential to address shortcomings in the classic SN2 reaction of an amine with an alkyl electrophile, both with respect to reactivity and to enantioselectivity. The authors describe the development of a user-friendly method (reaction at room temperature, with com. available catalyst components) for the enantioconvergent nucleophilic substitution of racemic secondary alkyl halides (α-iodolactams) by indoles. Mechanistic studies are consistent with the formation of a copper(I)-indolyl complex that reacts at different rates with the two enantiomers of the electrophile, which interconvert under the reaction conditions (dynamic kinetic resolution). This study complements earlier work on photoinduced enantioconvergent N-alkylation, supporting the premise that this important challenge can be addressed by a range of strategies. The experimental part of the paper was very detailed, including the reaction process of 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Product Details of 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Product Details of 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

James-Okoro, Paula-Peace O.’s team published research in World News of Natural Sciences in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Category: tetrahydrofurans

In 2021,World News of Natural Sciences included an article by James-Okoro, Paula-Peace O.; Iheagwam, Franklyn N.; Sholeye, Mariam I.; Umoren, Itoroobong A.; Adetuyi, Babatunde O.; Ogundipe, Adebanke E.; Braimah, Adefoyeke A.; Adekunbi, Tobi S.; Ogunlana, Oluseyi E.; Ogunlana, Olubanke O.. Category: tetrahydrofurans. The article was titled 《Phytochemical and in vitro antioxidant assessment of Yoyo bitters》. The information in the text is summarized as follows:

In this paper, herbal bitters are widely used due to their numerous acclaimed health benefits in many Nigerian homes; however, many have not been subjected to scientific scrutiny. The aim of this study was to determine the phytochem. composition and antioxidant capacity of a non-alc. polyherbal formulation, Yoyo bitters, towards validating its broad pharmacol. claims. The phytochem. components of Yoyo bitters were ascertained by phytochem. screening assays and gas chromatog.-mass spectrometry (GC-MS). The antioxidant activity was investigated in vitro using 2,2-diphenyl-1-picryhydrazyl (DPPH) radical, hydrogen peroxide (H2O2) scavenging activity, total antioxidant capacity (TAC) and ferric reducing antioxidant power (FRAP) assays. Qual. phytochem. anal. of Yoyo bitters showed the presence of saponins, tannins, flavonoids, terpenoids, cardiac glycosides and anthocyanins. The total phenols, flavonoids, flavanols, tannins and carotenoids content were 14.741 ± 0.64 mg GAE/mL, 0.152 ± 0.01 mg RE/mL, 0.437 ± 0.02 mg RE/mL, 0.368 ± 0.04 mg TAE/mL and 0.016 ± 0.00 mg CAE/mL resp. GC-MS chromatogram revealed the presence of forty-three (43) phytochem. compounds with D-allose (41.81%), 1,6-anhydro-beta-D-glucofuranose (24.15%), 5-hydroxymethylfurfural (8.02%) and Z-6-pentadecen-1-ol acetate (3.50%) as the most abundant constituents. Yoyo bitters demonstrated effective antioxidant activity against DPPH and H2O2 with IC50 values of 0.492 mg/mL and 0.629 mg/mL resp. compared to ascorbic acid of 0.161 mg/mL and 0.130 mg/mL resp. Total antioxidant capacity and ferric reducing antioxidant power of Yoyo bitters were 0.432 mg AAE/mL and 2.236 mg AAE/mL resp. This study validates the antioxidant capacity of Yoyo bitters and provides chem. basis for its acclaimed pharmacol. actions.3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Category: tetrahydrofurans) was used in this study.

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kiddane, Anley Teferra’s team published research in Current Issues in Molecular Biology in 2022 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one

In 2022,Current Issues in Molecular Biology included an article by Kiddane, Anley Teferra; Kang, Min-Jae; Ho, Truc Cong; Getachew, Adane Tilahun; Patil, Maheshkumar Prakash; Chun, Byung-Soo; Kim, Gun-Do. Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one. The article was titled 《Anticancer and Apoptotic Activity in Cervical Adenocarcinoma HeLa Using Crude Extract of Ganoderma applanatum》. The information in the text is summarized as follows:

Cancer is currently one of the foremost health challenges and a leading cause of death worldwide. Cervical cancer is caused by cofactors, including oral contraceptive use, smoking, multiparity, and HIV infection. One of the major and considerable etiologies is the persistent infection of the oncogenic human papilloma virus. G. applanatum is a valuable medicinal mushroom that has been widely used as a folk medicine for the treatment and prevention of various diseases. In this study, we obtained crude extract from G. applanatum mushroom with a subcritical water extraction method; cell viability assay was carried out and the crude extract showed an antiproliferative effect in HeLa cells with IC50 of 1.55 ± 0.01 mg/mL; however, it did not show any sign of toxicity in HaCaT. Protein expression was detected by Western blot, stability of IκBα and downregulation of NFκB, IKKα, IKKβ, p-NFκB-65(Ser 536) and p-IKKα/β(Ser 176/180), suggesting loss of survival in a dose-dependent manner. RT-qPCR revealed RNA/mRNA expression; fold changes of gene expression in Apaf-1, caspase-3, cytochrome-c, caspase-9, Bax and Bak were increased, which implies apoptosis, and NFκB was decreased in a dose-dependent manner. DNA fragmentation was seen in the treatment groups as compared to the control group using gel electrophoresis. Identification and quantification of compounds were carried out by GC-MS and HPLC, resp.; 2(5H)furanone with IC50 of 1.99 ± 0.01 μg/mL could be the responsible anticancer compound In conclusion, these findings suggest the potential use of the crude extract of G. applanatum as a natural source with anticancer activity against cervical cancer. In addition to this study using 3-Hydroxydihydrofuran-2(3H)-one, there are many other studies that have used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one) was used in this study.

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Jensen, Pernille R.’s team published research in ACS Sustainable Chemistry & Engineering in 2020 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Formula: C4H6O3

《Visualization of Pathway Usage in an Extended Carbohydrate Conversion Network Reveals the Impact of Solvent-Enabled Proton Transfer》 was written by Jensen, Pernille R.; Knudsen, Rikke K.; Meier, Sebastian. Formula: C4H6O3 And the article was included in ACS Sustainable Chemistry & Engineering on August 17 ,2020. The article conveys some information:

Bio-sourced mols. should increasingly contribute to meeting societal demands for energy and chems., while reducing net carbon dioxide release and the dependence on fossil resources. Especially oxygenated chems. can be derived from carbohydrates, and the conversion of carbohydrates in protic and nonprotic solvents has attracted considerable interest. Here, we probe chemocatalytic carbohydrate conversion in a time-resolved manner using quant. in situ NMR spectroscopy. A core reaction network in the carbohydrate conversion by Sn(IV) in nonprotic solvents is followed by identifying and quant. tracking 10 chems. with more than 70 at. sites. In situ anal. yields nine rate constants and shows that (co)solvents with labile protons strongly affect tautomerization kinetics and product distributions at an upstream branch point of the reaction network. Solvent-enabled tautomerization and the ensuing accumulation of reactive 1,2-dicarbonyl compounds can thus be key factors influencing reaction kinetics and atom economy in carbohydrate conversion. A reaction network for carbohydrate valorization was observed, revealing the impact of solvent protons on the desired process and on aggregation and degradation reactions. In the experimental materials used by the author, we found 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Formula: C4H6O3)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Formula: C4H6O3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Varghese, Sincy’s team published research in Biocatalysis and Agricultural Biotechnology in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Product Details of 19444-84-9

Product Details of 19444-84-9On September 30, 2021 ,《Antidiabetic and antilipidemic effect of Clerodendrum paniculatum flower ethanolic extract. An in vivo investigation in Albino Wistar rats》 was published in Biocatalysis and Agricultural Biotechnology. The article was written by Varghese, Sincy; Kannappan, Poornima; Kanakasabapathi, Devaki; Madathil, SriRashmy; Perumalsamy, Muneeswari. The article contains the following contents:

The goal was to evaluate the effects of ethanolic extract of Clerodendrum paniculatum flower (CPF) on antidiabetic and antilipidemic tests indexes of exptl.-induced hyperglycemic rats. High Fat Diet (HFD) treated Streptozotocin (STZ) induced diabetic rats were used for this study. The acute toxicity of ethanolic extract of C. paniculatum flower (2000 mg/kg body weight) and antidiabetic effect of CPF (200 mg/kg body weight)were studied in rats. Glibenclamide (1.25 mg/kg body weight) was used as a reference drug. For antihyperglycemic evaluation, glucose, C-peptide, Insulin, Hb and glycosylated Hb(HbA1c) levels were analyzed. Low d. lipoprotein (LDL), High d. lipoprotein(HDL), triglycerides and total cholesterol were analyzed in rats. The enzymic antioxidant activity (super oxide dismutase(SOD), glutathione peroxidase(GPx), glutathione S transferase (GST) and Catalase) and non-enzymic antioxidant activity(vitamin C, vitamin E and reduced glutathione) of C. Paniculatum flower were evaluated. Important carbohydrate metabolizing enzymes like Glucose 6-phosphatase, Fructose 1and 6 diphosphatase and hexokinase were determined in exptl. rats. After the oral administration of CPF extract significantly reduced glucose levels and cholesterol values. Extract improved enzymic and non enzymic antioxidant levels. CPF extract is useful in controlling blood glucose level as well as improving lipid metabolism and body weight in rats with induced diabetic rats. The results came from multiple reactions, including the reaction of 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Product Details of 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Product Details of 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Groenewold, Gary S.’s team published research in ACS Sustainable Chemistry & Engineering in 2020 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one

Groenewold, Gary S.; Hodges, Brittany; Hoover, Amber N.; Li, Chenlin; Zarzana, Christopher A.; Rigg, Kyle; Ray, Allison E. published an article on February 3 ,2020. The article was titled 《Signatures of Biologically Driven Hemicellulose Modification Quantified by Analytical Pyrolysis Coupled with Multidimensional Gas Chromatography Mass Spectrometry》, and you may find the article in ACS Sustainable Chemistry & Engineering.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one The information in the text is summarized as follows:

Biomass storage conditions are a major source of feedstock quality variability that impact downstream preprocessing, feeding, handling and conversion into biofuels, chems. and products. Microbial activity in the stored biomass can result in heating that can modify or degrade the cell walls of the biomass, changing its characteristics. Anal. pyrolysis has been used to characterize biomass, but at temperatures typically used (∼600°C), differentiation of samples having different storage histories is subtle or non-existent. In this study, lower-temperature (400°C) pyrolysis was used to show large differences in corn stover samples that had experienced different biol. heating histories, indicated by pyrolysis products that were identified, and in several cases quantified using two-dimensional gas chromatog. / mass spectrometry. Pyrolysis of the samples originating from biomass that had experienced biol. heating during storage generated small oxygenates such as furfural, 5-Me furfural and 2-(5H)-furanone with efficiencies that were as much as ten times greater than those measured for samples that were not significantly heated. Most of the pyrolysis products with enhanced efficiencies were C5 oxygenates, suggesting formation from hemicellulosic precursor polymers in the corn stover. The findings suggest that biol. heating is disrupting the cell wall structure, fragmenting the hemicellulose or cellulose chains, and generating more polymer termini that have higher efficiency for generating the oxygenates at lower temperatures Further, anal. pyrolysis conducted at lower temperatures may be a beneficial strategy for improved biomass cell wall characterization, and for providing insights to understand and manage the feedstock variability to inform harvest and storage best management practices. The experimental part of the paper was very detailed, including the reaction process of 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem