Effect of amorphization method on the physicochemical properties of amorphous sucrose was written by Morrow, Elizabeth A.;Terban, Maxwell W.;Thomas, Leonard C.;Gray, Danielle L.;Bowman, Michael J.;Billinge, Simon J. L.;Schmidt, Shelly J.. And the article was included in Journal of Food Engineering in 2019.Recommanded Product: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:
Our objective was to characterize the physicochem. properties of amorphous sucrose prepared by freeze-drying (FreD), spray-drying (SprayD), ball milling (BallM), melt-quenching (MeltQ), and spin-melt-quenching (SpinMeltQ). SEM indicated that FreD, SprayD, BallM, and SpinMeltQ formed distinct particles, while MeltQ formed a single mass. Powder X-ray diffraction confirmed that BallM was semi-crystalline, while FreD, SprayD, MeltQ, and SpinMeltQ were amorphous. However, total scattering pair distribution function anal. of synchrotron X-ray diffraction data suggested that local mol.-level ordering differences existed between MeltQ and FreD, SprayD, and SpinMeltQ. Chromatog. analyses revealed that thermal decomposition indicator compounds were present in BallM, MeltQ, and SpinMeltQ, but not in FreD and SprayD. All samples exhibited a glass transition. Addnl., FreD, SprayD, BallM, and SpinMeltQ exhibited an exothermic cold crystallization peak, but MeltQ did not. Overall, this research provides evidence that sucrose is a material whose physicochem. properties are strongly influenced by amorphization method. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Recommanded Product: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).
(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem