Anti-viral treatment for SARS-CoV-2 infection: A race against time amidst the ongoing pandemic was written by Vallianou, Natalia G.;Tsilingiris, Dimitrios;Christodoulatos, Gerasimos Socrates;Karampela, Ιrene;Dalamaga, Maria. And the article was included in Metabolism Open in 2021.Synthetic Route of C13H19N3O7 The following contents are mentioned in the article:
A review. Remdesivir (GS-5734), a drug initially developed to treat hepatitis C and Ebola virus disease, was the first approved treatment for severe coronavirus disease 2019 (COVID-19). However, apart from remdesivir, there is a paucity of other specific anti-viral agents against SARS-CoV-2 infection. In 2017, researchers had documented the anti-coronavirus potential of remdesivir in animal models. At the same time, trials performed during two Ebola outbreaks in Africa showed that the drug was safe. Although vaccines against SARS-CoV-2 infection have emerged at an enormously high speed, equivalent results from efforts towards the development of anti-viral drugs, which could have played a truly life-saving role in the current stage of the pandemic, have been stagnating. In this review, we will focus on the current treatment options for COVID-19 which mainly consist of repurposed agents or treatments conferring passive immunity (convalescent plasma or monoclonal antibodies). Addnl., potential specific anti-viral therapies under development will be reviewed, such as the decoy miniprotein CTC-445.2d, protease inhibitors, mainly against the Main protein Mpro, nucleoside analogs, such as molnupiravir and compounds blocking the replication transcription complex proteins, such as zotatifin and plitidepsin. These anti-viral agents seem to be very promising but still require meticulous clin. trial testing in order to establish their efficacy and safety. The continuous emergence of viral variants may pose a real challenge to the scientific community towards that end. In this context, the advent of nanobodies together with the potential administration of a combination of anti-viral drugs could serve as useful tools in the armamentarium against COVID-19. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Synthetic Route of C13H19N3O7).
((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Synthetic Route of C13H19N3O7
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem