Transport of purines and purine salvage pathway inhibitors by the Plasmodium falciparum equilibrative nucleoside transporter PfENT1 was written by Riegelhaupt, Paul M.;Cassera, Maria B.;Froehlich, Richard F. G.;Hazleton, Keith Z.;Hefter, Jonathan J.;Schramm, Vern L.;Akabas, Myles H.. And the article was included in Molecular & Biochemical Parasitology in 2010.COA of Formula: C11H13IN4O4 The following contents are mentioned in the article:
Plasmodium falciparum is a purine auxotroph. The transport of purine nucleosides and nucleobases from the host erythrocyte to the parasite cytoplasm is essential to support parasite growth. P. falciparum equilibrative nucleoside transporter 1 (PfENT1) is a major route for purine transport across the parasite plasma membrane. Malarial parasites are sensitive to inhibitors of purine salvage pathway enzymes. The immucillin class of purine nucleoside phosphorylase inhibitors and the adenosine analog, tubercidin, block growth of P. falciparum under in vitro culture conditions. We sought to determine whether these inhibitors utilize PfENT1 to gain access to the parasite cytosol. There is considerable controversy in the literature regarding the Km and/or Ki for purine transport by PfENT1 in the Xenopus oocyte expression system. We show that oocytes metabolize adenosine but not hypoxanthine. For adenosine, metabolism is the rate limiting step in oocyte uptake assays, making hypoxanthine the preferred substrate for PfENT1 transport studies in oocytes. We demonstrate that the Ki for PfENT1 transport of hypoxanthine and adenosine is in the 300-700 μM range. Effects of substrate metabolism on uptake studies may explain conflicting results in the literature regarding the PfENT1 adenosine transport Km. PfENT1 transports the tubercidin class of compounds None of the immucillin compounds tested inhibited PfENT1 transport of [3H]hypoxanthine or [3H]adenosine. Although nucleobases are transported, modifications of the ribose ring in corresponding nucleoside analogs affect substrate recognition by PfENT1. These results provide new insights into PfENT1 and the mechanism by which purine salvage pathway inhibitors are transported into the parasite cytoplasm. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4COA of Formula: C11H13IN4O4).
(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.COA of Formula: C11H13IN4O4
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem