Flour from mature Prosopis nigra pods as suitable substrate for the synthesis of prebiotic fructo-oligosaccharides and stabilization of dehydrated Lactobacillus delbrueckii subsp. bulgaricus was written by Romano, Nelson;Sciammaro, Leonardo;Mobili, Pablo;Puppo, Maria Cecilia;Gomez-Zavaglia, Andrea. And the article was included in Food Research International in 2019.Name: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol This article mentions the following:
Prosopis nigra, a sucrose-rich crop, was used to enzymically synthesize fructo-oligosaccharides (FOS). The obtained products were used as stabilizing matrixes during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333.The centesimal composition of P. nigra flour was firstly determined FOS were synthesized using Viscozyme L as biocatalyst. The progress of the enzymic reaction was monitored by HPLC and compared with a reaction carried out using equivalent concentrations of pure sucrose as substrate (control). Then, P. nigra containing or not the obtained FOS (P. nigra + FOS or P. nigra) were used as matrixes for freeze-drying and storage of L. delbrueckii subsp. bulgaricus CIDCA 333. P. nigra flour was rich in simple sugars (sucrose and fructose), total dietary fiber, and polyphenols. The main products of synthesis were FOS with ds.p. (DP) within 3 and 5, and these results were comparable with those of the controls. DP3 was the first product obtained, attaining the maximal production after 1.29 h of synthesis. The maximal production of total FOS (DP3 + DP4 + DP5) was achieved after 2.57 h, indicating that larger FOS (DP4, DP5) were produced from DP3. Glucose was obtained as secondary product, but with significantly lower Vmax and Kf (maximal velocity for the production and constant for the formation) than DP3. Both P. nigra + FOS or P. nigra matrixes stabilized the highly sensitive L. delbrueckii subsp. bulgaricus CIDCA 333 strain during freeze-drying and storage for up to 140 days at 4 °C, and were significantly better protectants than the controls of sucrose (p <0.05). The concomitant presence of prebiotics (FOS), antioxidants (polypyhenols) and lactic acid bacteria in the matrixes provides a smart strategy to increase the value of this underutilized regional crop, turning it in an interesting ingredient potentially useful in the food industry. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9Name: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol).
(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 470-69-9) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Name: (2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-2-((((2R,3S,4S,5R)-3,4-Dihydroxy-2,5-bis(hydroxymethyl)tetrahydrofuran-2-yl)oxy)methyl)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol
Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem