Pu, Dan et al. published their research in Journal of Biomedical Nanotechnology in 2014 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Product Details of 13146-72-0

Sequencing-by-ligation using oligonucleotide probes with 3′-thio-deoxyinosine was written by Pu, Dan; Chen, Jing; Bai, Yunfei; Tu, Jing; Xie, Hongmei; Wang, Wenjie; Xiao, Pengfeng; Lu, Zuhong. And the article was included in Journal of Biomedical Nanotechnology on May 31,2014.Product Details of 13146-72-0 The following contents are mentioned in the article:

We have developed a novel sequencing-by-ligation (SBL) system employing oligonucleotide probes containing 3′-thio-deoxyinosine on a microarray. The oligonucleotide probes were synthesized from 3′-S-(2-cyanoethyl-N,N-diisopropylphosphorothioamidite)-5′-O-(4,4′ dimet-hoxytrityl) deoxyinosine. The resultant probes could be cleaved chem. by aqueous silver ions under mild conditions, generating a 5′-terminal phosphate group in a degradation oligodeoxynucleotide fragment. This 5′-terminal phiosphate was used directly for detecting the corresponding bases in subsequent sequencing cycles. The queried bases in the template were identified with eight cycles of ligation and cleavage. The read length of our method could reach up to 40 bp with high accuracy. As this SBL method uses com. available enzymes and standard microarrays, it will be amenable to automation and adaptation by the research community. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Product Details of 13146-72-0).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.Product Details of 13146-72-0

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Gu, Qun et al. published their research in Journal of Chromatography A in 2011 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Evaluation of automated sample preparation, retention time locked gas chromatography-mass spectrometry and data analysis methods for the metabolomic study of Arabidopsis species was written by Gu, Qun; David, Frank; Lynen, Frederic; Rumpel, Klaus; Dugardeyn, Jasper; Van Der Straeten, Dominique; Xu, Guowang; Sandra, Pat. And the article was included in Journal of Chromatography A on May 27,2011.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

In this paper, automated sample preparation, retention time locked gas chromatog.-mass spectrometry (GC-MS) and data anal. methods for the metabolomics study were evaluated. A miniaturized and automated derivatization method using sequential oximation and silylation was applied to a polar extract of 4 types (2 types × 2 ages) of Arabidopsis thaliana, a popular model organism often used in plant sciences and genetics. Automation of the derivatization process offers excellent repeatability, and the time between sample preparation and anal. was short and constant, reducing artifact formation. Retention time locked (RTL) gas chromatog.-mass spectrometry was used, resulting in reproducible retention times and GC-MS profiles. Two approaches were used for data anal. XCMS followed by principal component anal. (approach 1) and AMDIS deconvolution combined with a com. available program (Mass Profiler Professional) followed by principal component anal. (approach 2) were compared. Several features that were up- or down-regulated in the different types were detected. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Safety of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Abel-Santos, Ernesto et al. published their research in New Journal of Chemistry in 2007 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Formula: C10H12N4O4 

Differential nucleoside recognition during Bacillus cereus 569 (ATCC 10876) spore germination was written by Abel-Santos, Ernesto; Dodatko, Tetyana. And the article was included in New Journal of Chemistry on May 31,2007.Formula: C10H12N4O4  The following contents are mentioned in the article:

The authors have tested a series of inosine analogs for their effect on germinating B. cereus 569 spores. The results showed that although inosine (hypoxanthine nucleoside) causes spore germination by itself, the kinetic pathway exhibited complex and strongly cooperative character. Contrary to inosine’s germinating effect, the purine pathway degradation products xanthine, xanthosine, uric acid, hypoxanthine, ribose, or ribose plus hypoxanthine failed to activate spore germination. Furthermore, even small modifications of inosine’s nucleobase or sugar moieties have deleterious effects on germination efficiency. In contrast to previous work with the B. cereus 3711 strain, incubation of B. cereus 569 spores with adenosine (6-aminopurine riboside) did not trigger germination, but prevented inosine-mediated germination. The inhibitory effect was lost if adenosine was substituted with adenine alone, or ribose plus adenine. Although adenosine is able to block inosine-mediated germination, it acts as a co-germinant in the presence of alanine. Nucleosides that have substitutions in the purine base are not able to trigger germination by themselves, but can act as co-germinants in the presence of sub-germinant concentrations of alanine. In contrast, modifications of the sugar moiety precluded germination activity under all conditions tested. The data suggests that only inosine can activate germination by itself. However, when alanine is present as a co-germinant, different germination receptors are activated that recognize a larger subset of nucleoside structures. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Formula: C10H12N4O4 ).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Formula: C10H12N4O4 

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Li, Yan et al. published their research in Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) in 2022 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

Physiological defense and metabolic strategy of Pistia stratiotes in response to zinc-cadmium co-pollution was written by Li, Yan; Xin, Jianpan; Tian, Runan. And the article was included in Plant Physiology and Biochemistry (Issy-les-Moulineaux, France) on May 1,2022.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol The following contents are mentioned in the article:

Pistia stratiotes is a cadmium (Cd) hyperaccumulating plant with strong bioaccumulation and translocation capacity for Cd. A hydroponic experiment was used to evaluate the combined effect of Zinc (Zn) and Cd at different concentrations on leaf growth and metabolism of P. stratiotes. This study revealed the physiol. defense and metabolic strategy of responses to Zn-Cd co-pollution. With the Zn50Cd1, Zn50Cd10, Zn100Cd1, and Zn100Cd10 treatments for 9 d, the relative crown diameter, relative leave number, and ramet number of the plant had no significant difference with the control. Under the compound treatments containing Zn50Cd50 and Zn100Cd50, the activity of the glyoxalase system and amino acid metabolism in the leaves were inhibited. The leaf photosynthetic apparatus increased heat dissipation to reduce the damage to the photosystem II (PS II) reaction center caused by excess excitation energy under Zn-Cd stress. This safeguarded the balance between the absorption and utilization of light energy. Compared to the control, the Zn and Cd co-pollution for 9 d had no effect on the reduced glutathione (GSH) and oxidized glutathione (GSSG) contents. There was no effect on the dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities, but there was increased ascorbate peroxidase (APX) activity and oxidized ascorbic acid (DHA) content. These increased the antioxidant capacity of the ascorbate-glutathione (AsA-GSH) cycle. The treated plants also had increased levels of carnosol and substances related to lipid metabolism including 9, 10-Dihydroxystearate, Prostaglandin G2, Sphingosine, and 13-L-Hydroperoxylinoleic acid, maintaining the cell stability and resistance to the Zn-Cd stress. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Commercial tetrahydrofuran contains substantial water that must be removed for sensitive operations, e.g. those involving organometallic compounds. Although tetrahydrofuran is traditionally dried by distillation from an aggressive desiccant, molecular sieves are superior.Quality Control of (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4

Schmidt, Michael F. G. et al. published their research in European Journal of Biochemistry in 1978 | CAS: 67341-43-9

Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester (cas: 67341-43-9) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Related Products of 67341-43-9

Metabolism of 2-deoxy-2-fluoro-D-[3H]-glucose and 2-deoxy-2-fluoro-D-[3H]-mannose in yeast and chick embryo cells was written by Schmidt, Michael F. G.; Biely, Peter; Kratky, Zdenek; Schwarz, Ralph T.. And the article was included in European Journal of Biochemistry on June 15,1978.Related Products of 67341-43-9 The following contents are mentioned in the article:

2-Deoxy-2-fluoro-D-glucose-3H and 2-deoxy-2-fluoro-D-mannose-3H were prepared by tritiation of the corresponding unlabeled 2-fluoro sugars. The tritiated 2-fluoro sugars were phosphorylated and activated by UTP and by GTP to yield UDP-2-deoxy-2-fluoro-D-glucose-3H, UDP-2-deoxy-2-fluoro-D-mannose-3H, GDP-2-deoxy-2-fluoro-D-glucose-3H, and GDP-2-deoxy-2-fluoro-D-mannose-3H in yeast and chick embryo cells. The nucleotide derivatives were also labeled in the nucleotide moiety by feeding the cells with uridine-14C or guanosine-14C in the presence of unlabeled 2-fluoro sugar. No evidence was obtained for metabolic steps in which the 6-C chain of 2-fluoro sugars was not preserved. No epimerization of the label to 2-deoxy-2-fluoro-D-galactose-3H was observed by radioactive gas-liquid chromatog. of the enzymic cleavage products of the different 2-fluoro sugar metabolites isolated from either cell type. Yeast and chick embryo cells both incorporate a 2-deoxy-2-fluoro-D-glucose-3H and 2-deoxy-2-fluoro-D-mannose-3H specifically into glycoproteins, although this incorporation was very low when compared to the incorporation of 2-deoxy-D-glucose-3H. This study involved multiple reactions and reactants, such as Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester (cas: 67341-43-9Related Products of 67341-43-9).

Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester (cas: 67341-43-9) belongs to tetrahydrofuran derivatives. Solid acid catalysis, and the advantages often associated with their use, have been proved equally efficient for the synthesis of tetrahydrofurans or furans. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Related Products of 67341-43-9

67341-43-9;Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester;The future of 67341-43-9;New trend of C15H23FN2O16P2 ;function of 67341-43-9

Gordon, Roni D. et al. published their research in Journal of Molecular Biology in 2006 | CAS: 67341-43-9

Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester (cas: 67341-43-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Name: Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester

X-ray Crystal Structures of Rabbit N-acetylglucosaminyltransferase I (GnT I) in Complex with Donor Substrate Analogues was written by Gordon, Roni D.; Sivarajah, Prashanth; Satkunarajah, Malathy; Ma, Dengbo; Tarling, Chris A.; Vizitiu, Dragos; Withers, Stephen G.; Rini, James M.. And the article was included in Journal of Molecular Biology on June 30,2006.Name: Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester The following contents are mentioned in the article:

The Golgi-resident glycosyltransferase, UDP-N-acetyl-D-glucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I (GnT I), initiates the conversion of high-mannose oligosaccharides to complex and hybrid structures in the biosynthesis of N-linked glycans. Reported here are the x-ray crystal structures of GnT I in complex with UDP-CH2-GlcNAc (a non-hydrolyzable C-glycosidic phosphonate), UDP-2-deoxy-2-fluoro-glucose, UDP-glucose and UDP. Collectively, these structures provide evidence for the importance of the GlcNAc moiety and its N-acetyl group in donor substrate binding, as well as insight into the role played by the flexible 318-330 loop in substrate binding and product release. In addition, the UDP-CH2-GlcNAc complex reveals a well-defined glycerol mol. poised for nucleophilic attack on the C1 atom of the donor substrate analog. The position and orientation of this glycerol mol. have allowed us to model the binding of the Manα1,3Manβ1 moiety of the acceptor substrate and, based on the model, to suggest a rationalization for the main determinants of GnT I acceptor specificity. This study involved multiple reactions and reactants, such as Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester (cas: 67341-43-9Name: Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester).

Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester (cas: 67341-43-9) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. THF can also be synthesized by catalytic hydrogenation of furan. This allows certain sugars to be converted to THF via acid-catalyzed digestion to furfural and decarbonylation to furan, although this method is not widely practiced. THF is thus derivable from renewable resources.Name: Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester

67341-43-9;Uridine 5′-(trihydrogen diphosphate) P’-(2-deoxy-2-fluoro-α-D-glucopyranosyl) ester;The future of 67341-43-9;New trend of C15H23FN2O16P2 ;function of 67341-43-9

Morishige, Kazuhisa et al. published their research in Experimental Parasitology in 1995 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.COA of Formula: C10H12N4O4 

Leishmania donovani: pilot study for evaluation of therapeutic effects of inosine analogs against amastigotes in vitro and in vivo was written by Morishige, Kazuhisa; Aji, Toshiki; Ishii, Akira; Yasuda, Tatsuji; Wataya, Yusuke. And the article was included in Experimental Parasitology on June 30,1995.COA of Formula: C10H12N4O4  The following contents are mentioned in the article:

The inhibition by carbocyclic inosine (C-Ino), 3′-deoxyinosine (3′-dI), and 3′-deoxy-3′-fluoroinosine (3′-FI) of Leishmania donovani amastigotes was examined J774.1 cells (a mouse macrophage line) were cultured in GIT medium with lipopolysaccharide and hemin and infected with the parasite. C-Ino (3 μM) completely inhibited and 3′-dI (30 μM) reduced to 40% the infection rate on Day 6 after infection. The standard pentostam (30 μM) resulted in a 38% infection rate. The therapeutic efficacies of nonentrapped free and liposome-entrapped inosine analogs were tested in mice infected with L. donovani. The mice were injected i.v. five times on alternate days, beginning 2 days after infection. Treatment with the nonentrapped free inosine analog of C-Ino (100 mg/kg), 3′-dI (100 mg/kg), or 3′-FI (50 mg/kg) resulted in an LDU (Leishmania donovan units) that were 94, 68, or 73% lower, resp., than the control values. Treatment with the corresponding entrapped inosine analog (10 mg/kg) caused decreases of 90, 69, or 68% LDU, resp. The entrapped inosine analogs were inhibitory at doses one-fifth to one-tenth of the nonentrapped free inosine analogs. C-Ino had the strongest inhibitory effect among the three analogs tested in vitro and in vivo. Liposome-entrapped C-Ino had no severe side effects, although spleen weight increased. The agent may be useful as an antileishmanial drug. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0COA of Formula: C10H12N4O4 ).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. Tetrahydrofuran can also be produced, or synthesised, via catalytic hydrogenation of furan. This process involves converting certain sugars into THF by digesting to furfural. An alternative to this method is the catalytic hydrogenation of furan with a nickel catalyst.COA of Formula: C10H12N4O4 

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Svendsen, Karsten Ramlov et al. published their research in Cancer Chemotherapy and Pharmacology in 1992 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

Toxicity and metabolism of 3′-deoxyadenosine N1-oxide in mice and Ehrlich ascites tumor cells was written by Svendsen, Karsten Ramlov; Overgaard-Hansen, Kay; Frederiksen, Sune; Engelholm, Svend Aage; Pedersen, Niels Tinggaard; Vindelov, Lars Lindhardt. And the article was included in Cancer Chemotherapy and Pharmacology on June 30,1992.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol The following contents are mentioned in the article:

The toxic effect of 3′-deoxyadenosine N1-oxide (DANO) on mice, on their organs, and on Ehrlich ascites tumor cells was studied. In both healthy and tumor-bearing animals, the i.p. LD10 of DANO was about 300 mg/kg for 4 days in the Theiller mouse strain. In the NMRI strain, a markedly higher LD10 value (675 mg/kg for 5 days) was found. At nonlethal doses (250 mg/kg for 4 days), reversible neurol. symptoms were observed on days 4-12 after treatment, but no macroscopical or microscopical changes were detected in the brain, heart, thymus, lung, lymph nodes, spleen, liver, kidney, bone marrow, or gastrointestinal tract. At doses of 450 mg/kg for 4 days, severe neurol. symptoms, atony of the gastrointestinal canal, and damage to the kidney and liver were found. Even at doses that were lethal to mice, no histopathol. changes were observed in the bone marrow or in the gastrointestinal tract. After i.p. injection of DANO, the maximal blood plasma concentration was reached after 10 min, after which it declined showing a half-life of about 40 min. A transient accumulation of 3′-deoxyadenosine triphosphate (3′-dATP) was observed within 24 h in the liver and kidney, with the maximal concentration being reached after about 2-3 h. DANO was excreted partly as the unchanged substance and partly as 3′-deoxyinosine metabolite within 24 h. Flow-cytometric DNA anal. of Ehrlich tumor cells treated in vitro or in vivo with DANO revealed no therapy-induced perturbations of the cell cycle, which indicates that the cells were killed randomly during all phases of the cycle. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Name: 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Bruns, Robert F. et al. published their research in Canadian Journal of Physiology and Pharmacology in 1980 | CAS: 13146-72-0

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.HPLC of Formula: 13146-72-0

Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists was written by Bruns, Robert F.. And the article was included in Canadian Journal of Physiology and Pharmacology on June 30,1980.HPLC of Formula: 13146-72-0 The following contents are mentioned in the article:

Adenosine [58-61-7] (ED50 15 μM) causes a 50-fold increase in intracellular cyclic AMP in the VA13 human fibroblast line. A total of 128 nucleosides was tested as agonists and antagonists. Eight classes of compounds were found: full agonists (14 compounds), weak agonists (20), high-efficacy partial agonists (16), low-efficacy partial agonists (7), competitive inhibitors (11), noncompetitive inhibitors (3), partial agonist – noncompetitive inhibitors (3), and inactive compounds (54). The noncompetitive inhibitors antagonized the responses to adenosine, isoproterenol, and prostaglandin E1 and thus may have been adenylate cyclase inhibitors. The most potent noncompetitive inhibitor, 2′,5′-dideoxyadenosine [6698-26-6] was a partial inhibitor, reducing the response to isoproterenol by only 77% even at very high concentrations The most potent agonists, partial agonists, and pure antagonists had apparent affinities of about 5 μM. Although all positions were important for affinity at the adenosine receptor, only the 3′- and 5′-positions and to a much lesser extent the 6- and 8-positions had an effect on efficacy. The receptor tolerated bulky groups at the 6-position of adenosine, had an Et-sized pocket near the 5′-position, and had little bulk tolerance towards modifications at other positions. Among the full agonists, only one 5′-derivative and one 2-position derivative had higher apparent affinity than adenosine. Studies with conformationally restricted agonists and antagonists showed that adenosine must be in the anti conformation in order to bind to the receptor. This study involved multiple reactions and reactants, such as 9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0HPLC of Formula: 13146-72-0).

9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol (cas: 13146-72-0) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.HPLC of Formula: 13146-72-0

13146-72-0;9-((2R,3R,5S)-3-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-9H-purin-6-ol;The future of 13146-72-0;New trend of C10H12N4O4 ;function of 13146-72-0

Hou, Wenpeng et al. published their research in Plant and Soil in 2021 | CAS: 550-33-4

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 550-33-4

Metabolomics insights into the mechanism by which Epichloe gansuensis endophyte increased Achnatherum inebrians tolerance to low nitrogen stress was written by Hou, Wenpeng; Wang, Jianfeng; Christensen, Michael J.; Liu, Jie; Zhang, Yongqiang; Liu, Yinglong; Cheng, Chen. And the article was included in Plant and Soil on June 30,2021.HPLC of Formula: 550-33-4 The following contents are mentioned in the article:

Epichloe gansuensis increases the tolerance of host plants to abiotic stress. However, little is known about the mechanism by which E. gansuensis improves grass growth under low nitrogen availability stress. Achnatherum inebrians with E. gansuensis (E+) and without E. gansuensis (E-) were treated with modified 1/2 Hoagland containing 0.01 mM (low N) or 7.5 mM N (normal level) for 18 wk. After 18 wk of treatment with N, the dry weight of E+ and E- plants were measured, and the metabolomics anal. of leaves and roots grown under two different N concentrations was conducted with GS-MS to determine differential metabolites and metabolic pathways. E+ A. inebrians had higher dry weight of leaves and roots compared to the E- A. inebrians under low N stress. E. gansuensis increased the tolerance of A. inebrians to low N stress by its capability to increase the content of organic acids (salicylic acid and 3-hydroxypropionic acid) and glucose-6-phosphate in leaves, and E. gansuensis increased the content of fatty acids (linolenic acid and oleic acid) and amino acids (glycine and 4-aminobutyric acid) in roots under low N stress. Finally, E. gansuensis reprogramed the metabolic pathway of amino acids of host grasses to adapt to the different N concentration Our results reveal the chem. mechanism by which E. gansuensis enhances the tolerance of host grasses to low N, and provide the theor. basis for utilizing E. gansuensis, improving of grasses and crops, and for developing new germplasm for low-N tolerant grasses. This study involved multiple reactions and reactants, such as (2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4HPLC of Formula: 550-33-4).

(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol (cas: 550-33-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.HPLC of Formula: 550-33-4

550-33-4;(2R,3S,4R,5R)-2-(Hydroxymethyl)-5-(9H-purin-9-yl)tetrahydrofuran-3,4-diol;The future of 550-33-4;New trend of C10H12N4O4  ;function of 550-33-4