Polina, I. N.’s team published research in Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya in 65 | CAS: 19444-84-9

Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, COA of Formula: C4H6O3.

Polina, I. N. published the artcileInvestigation of the component composition of the oxidative thermal degradation products of fuel pellets from the Heracleum sosnowskyi Manden biomass by chromatography-mass-spectrometry, COA of Formula: C4H6O3, the publication is Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya (2022), 65(5), 68-76, database is CAplus.

The component composition of oxidative thermal degradation products of Heracleum sosnowskyi Manden biomass was studied by chromatog.-mass-spectrometry. The hogweed Sosnovskyi biomass was collected on the territory of the village of Vylgort in the Komi Republic, dried to an atm.-dry state, crushed to dm < 0.25 mm and pressed with a force of 10 kN. Fuel pellets were burned in the special device. The products of oxidative thermal degradation were captured and analyzed on a gas-liquid chromatog. with a mass-selective detector. As a result of mass spectrums anal., 39 low-mol.-weight products with a retention time of 6 to 79 min and a percentage content of 0.4 to 12% were identified from 47 captured compounds Qual. and quant. anal. of the component composition of the degradation products showed that their formation is directly related to the component composition of the biomass and is determined by the content of cellulose, hemicellulose and lignin. Anal. of data on retention time of the degradation products showed that cellulose and hemicellulose of the biomass sample are degraded priority, while lignin is thermally more stable due to its aromatic nature. Anal. of data on products of oxidative thermal degradation showed that in mass terms, polysaccharides and lignin are formed as a percentage 45 and 49 resp., while the composition of the products of destruction of polysaccharides is more diverse (23 and 16 names). It is shown that the list of products of oxidative thermal degradation of the Heracleum sosnowskyi Manden biomass is comparable to the products of thermal decomposition of lignocellulosic materials of other botanical origin. The results of the presented study can be used in the calculation of processes and installations for burning fuel pellets from the biomass of the Heracleum sosnowskyi Manden or a combined composition fuel pellets. As well as the results can be used to assess the complex environmental impact of the technol. of the energy use of the biomass of the hogweed Sosnowskyi on the atm. air.

Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, COA of Formula: C4H6O3.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Bobkov, Georgii V.’s team published research in Tetrahedron in 64 | CAS: 87865-78-9

Tetrahedron published new progress about 87865-78-9. 87865-78-9 belongs to tetrahydrofurans, auxiliary class Nucleosides and Nucleotides,Nucleoside Analogues, name is N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide, and the molecular formula is C26H45N5O7Si2, Recommanded Product: N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide.

Bobkov, Georgii V. published the artcilePhosphoramidite building blocks for efficient incorporation of 2′-O-aminoethoxy(and propoxy)methyl nucleosides into oligonucleotides, Recommanded Product: N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide, the publication is Tetrahedron (2008), 64(27), 6238-6251, database is CAplus.

A simple and efficient method for the preparation of eight phosphoramidite building blocks for incorporation of 2′-O-(2-aminoethoxymethyl)ribonucleosides and 2′-O-(3-aminopropoxymethyl)ribonucleosides into synthetic oligonucleotides has been developed. The synthetic routes are maximally convergent and provide sufficient amounts of phosphoramidites for several solid-phase synthesis coupling reactions. Using acyclic derivatives, e.g., AcOCH2CH2OCH2CH2NHCOCF3 the overall yields of phosphoramidites, e.g. I, were increased up to 50% for pyrimidine nucleosides and up to 30% for purine derivatives with substantial decrease of total reaction steps. The 2′-O-substituent was found to be stable during oligonucleotide synthesis. The resulting oligonucleotides are of particular interest for post-synthetic functionalization and conjugation.

Tetrahedron published new progress about 87865-78-9. 87865-78-9 belongs to tetrahydrofurans, auxiliary class Nucleosides and Nucleotides,Nucleoside Analogues, name is N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide, and the molecular formula is C26H45N5O7Si2, Recommanded Product: N-(9-((6aR,8R,9R,9aS)-9-Hydroxy-2,2,4,4-tetraisopropyltetrahydro-6H-furo[3,2-f][1,3,5,2,4]trioxadisilocin-8-yl)-6-oxo-6,9-dihydro-1H-purin-2-yl)isobutyramide.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Tolborg, Soren’s team published research in ChemSusChem in 9 | CAS: 19444-84-9

ChemSusChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C5H6BNO2, Safety of 3-Hydroxydihydrofuran-2(3H)-one.

Tolborg, Soren published the artcileShape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites, Safety of 3-Hydroxydihydrofuran-2(3H)-one, the publication is ChemSusChem (2016), 9(21), 3054-3061, database is CAplus and MEDLINE.

A highly selective self-condensation of glycolaldehyde to different C4 mols. has been achieved using Lewis acidic stannosilicate catalysts in water at moderate temperatures (40-100 °C). The medium-sized zeolite pores (10-membered ring framework) in Sn-MFI facilitate the formation of tetrose sugars while hindering consecutive aldol reactions leading to hexose sugars. High yields of tetrose sugars (74 %) with minor amounts of vinyl glycolic acid (VGA), an α-hydroxyacid, are obtained using Sn-MFI with selectivities towards C4 products reaching 97 %. Tin catalysts having large pores or no pore structure (Sn-Beta, Sn-MCM-41, Sn-SBA-15, tin chloride) led to lower selectivities for C4 sugars due to formation of hexose sugars. In the case of Sn-Beta, VGA is the main product (30 %), illustrating differences in selectivity of the Sn sites in the different frameworks. Under optimized conditions, GA can undergo further conversion, leading to yields of up to 44 % of VGA using Sn-MFI in water. The use of Sn-MFI offers multiple possibilities for valorization of biomass-derived GA in water under mild conditions selectively producing C4 mols.

ChemSusChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C5H6BNO2, Safety of 3-Hydroxydihydrofuran-2(3H)-one.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yamaguchi, Sho’s team published research in ChemSusChem in 8 | CAS: 19444-84-9

ChemSusChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C13H14N2O, Category: tetrahydrofurans.

Yamaguchi, Sho published the artcileMechanistic Insight into a Sugar-Accelerated Tin-Catalyzed Cascade Synthesis of α-Hydroxy-γ-butyrolactone from Formaldehyde, Category: tetrahydrofurans, the publication is ChemSusChem (2015), 8(21), 3661-3667, database is CAplus and MEDLINE.

Applications of the formose reaction, which involves the formation of sugars from formaldehyde, have previously been confined to the selective synthesis of unprotected sugars. Herein, it is demonstrated that α-hydroxy-γ-butyrolactone (HBL), which is one of the most important intermediates in pharmaceutical syntheses, can be produced from paraformaldehyde. In the developed reaction system, homogeneous tin chloride exhibits high catalytic activity and the addition of mono- and disaccharides accelerates the formation of HBL. These observations suggest that the formose reaction may serve as a feasible pathway for the synthesis of important chems.

ChemSusChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C13H14N2O, Category: tetrahydrofurans.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yamaguchi, Sho’s team published research in ChemCatChem in 8 | CAS: 19444-84-9

ChemCatChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C17H14F3N3O2S, Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one.

Yamaguchi, Sho published the artcileInfluence of the interaction between a tin catalyst and an accelerator on the formose-inspired synthesis of α-hydroxy-γ-butyrolactone, Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one, the publication is ChemCatChem (2016), 8(7), 1386-1391, database is CAplus.

In this study, the authors focused on the tin-catalyzed transformation of formaldehyde into α-hydroxy-γ-butyrolactone (HBL) in the presence of an α-hydroxy carbonyl compound as the accelerator. The screening of various accelerators aided in clarifying the structural prerequisites of the accelerator for the formose-inspired synthesis of HBL. To investigate the influence of the interactions between the tin metal and the accelerator on the catalytic activity, the authors performed a deuterium-exchange experiment with α-hydroxyacetophenone followed by in situ 119Sn NMR spectroscopy and X-ray absorption fine structure measurements. On the basis of the exptl. results, the authors proposed a reaction mechanism to obtain HBL.

ChemCatChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C17H14F3N3O2S, Recommanded Product: 3-Hydroxydihydrofuran-2(3H)-one.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Yamaguchi, Sho’s team published research in ChemSusChem in 8 | CAS: 19444-84-9

ChemSusChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C12H10FeO4, Product Details of C4H6O3.

Yamaguchi, Sho published the artcileMechanistic Studies on the Cascade Conversion of 1,3-Dihydroxyacetone and Formaldehyde into α-Hydroxy-γ-butyrolactone, Product Details of C4H6O3, the publication is ChemSusChem (2015), 8(5), 853-860, database is CAplus and MEDLINE.

The chem. synthesis of com. and industrially important products from biomass-derived sugars is absolutely vital to establish biomass utilization as a sustainable alternative source of chem. starting materials. α-Hydroxy-γ-butyrolactone is a useful synthetic intermediate in pharmaceutical chem., and so novel biomass-related routes for its production may help to validate this eco-friendly methodol. Herein, we report the specific catalytic activity of homogeneous tin halides to convert the biomass-derived triose sugar 1,3-dihydroxyacetone and formaldehyde into α-hydroxy-γ-butyrolactone. A detailed screening of catalysts showed the suitability of tin catalysts for this reaction system, and isotope experiments using [D2]paraformaldehyde, substrate screening, and time profile measurements allowed us to propose a detailed reaction pathway. In addition, to elucidate the activated species in this cascade reaction, the effect of addnl. water and the influence of addnl. Bronsted acids on the reaction preferences for the formation of α-hydroxy-γ-butyrolactone, lactic acid, and vinyl glycolate were investigated. The active form of the Sn catalyst was investigated by 119Sn NMR spectroscopy.

ChemSusChem published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C12H10FeO4, Product Details of C4H6O3.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Bartoszewicz, Agnieszka’s team published research in Journal of the American Chemical Society in 141 | CAS: 19444-84-9

Journal of the American Chemical Society published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, SDS of cas: 19444-84-9.

Bartoszewicz, Agnieszka published the artcileEnantioconvergent Alkylations of Amines by Alkyl Electrophiles: Copper-Catalyzed Nucleophilic Substitutions of Racemic α-Halolactams by Indoles, SDS of cas: 19444-84-9, the publication is Journal of the American Chemical Society (2019), 141(37), 14864-14869, database is CAplus and MEDLINE.

Transition-metal catalysis has the potential to address shortcomings in the classic SN2 reaction of an amine with an alkyl electrophile, both with respect to reactivity and to enantioselectivity. The authors describe the development of a user-friendly method (reaction at room temperature, with com. available catalyst components) for the enantioconvergent nucleophilic substitution of racemic secondary alkyl halides (α-iodolactams) by indoles. Mechanistic studies are consistent with the formation of a copper(I)-indolyl complex that reacts at different rates with the two enantiomers of the electrophile, which interconvert under the reaction conditions (dynamic kinetic resolution). This study complements earlier work on photoinduced enantioconvergent N-alkylation, supporting the premise that this important challenge can be addressed by a range of strategies.

Journal of the American Chemical Society published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, SDS of cas: 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Brzezinska, Jolanta’s team published research in Molecules in 20 | CAS: 19444-84-9

Molecules published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Quality Control of 19444-84-9.

Brzezinska, Jolanta published the artcileNon-nucleosidic analogues of polyaminonucleosides and their influence on thermodynamic properties of derived oligonucleotides, Quality Control of 19444-84-9, the publication is Molecules (2015), 20(7), 12652-12669, database is CAplus and MEDLINE.

The rationale for the synthesis of cationic modified nucleosides is higher expected nuclease resistance and potentially better cellular uptake due to an overall reduced neg. charge based on internal charge compensation. Due to the ideal distance between cationic groups, polyamines are perfect counterions for oligodeoxyribonucleotides. We have synthesized non-nucleosidic analogs built from units that carry different diol structures instead of sugar residues and functionalized with polyamines. The non-nucleosidic analogs were attached as internal or 5′-terminal modifications in oligodeoxyribonucleotide strands. The thermodn. studies of these polyaminooligonucleotide analogs revealed stabilizing or destabilizing effects that depend on the linker or polyamine used.

Molecules published new progress about 19444-84-9. 19444-84-9 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Ester,Alcohol, name is 3-Hydroxydihydrofuran-2(3H)-one, and the molecular formula is C4H6O3, Quality Control of 19444-84-9.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ye, Jiaxin’s team published research in Hematology (Abingdon, United Kingdom) in 24 | CAS: 1338466-77-5

Hematology (Abingdon, United Kingdom) published new progress about 1338466-77-5. 1338466-77-5 belongs to tetrahydrofurans, auxiliary class Epigenetics,Histone Methyltransferase, name is 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, and the molecular formula is C10H16Br3N, Related Products of tetrahydrofurans.

Ye, Jiaxin published the artcileTranscriptome analysis identifies key regulators and networks in Acute myeloid leukemia, Related Products of tetrahydrofurans, the publication is Hematology (Abingdon, United Kingdom) (2019), 24(1), 487-491, database is CAplus and MEDLINE.

Acute myeloid leukemia (AML) is a heterogeneous and highly recurrent hematol. malignancy. Studies have shown an association between microRNAs and drive genes in AMLs. However, the regulatory roles of miRNAs in AML and how they act on downstream targets and the signaling pathway has been little studied. As to understand the mechanism of mRNA-miRNA interaction in the blood malignancy from a large scale of transcriptomic sequencing studies, we applied a comprehensive miRNA-mRNA association, co-expression gene network and ingenuity pathway anal. using TCGA AML datasets. Our results showed that his-mir-335 was a critical regulatory of homeobox A gene family. PBX3, KAT6A, MEIS1, and COMMD3-BMI1 were predicted as top transcription regulators in the regulatory network of the HOXA family. The most significantly enriched functions were cell growth, proliferation, and survival in the mRNA-miRNA network. Our work revealed that regulation of the HOXA gene family and its regulation played an important role in the development of AML.

Hematology (Abingdon, United Kingdom) published new progress about 1338466-77-5. 1338466-77-5 belongs to tetrahydrofurans, auxiliary class Epigenetics,Histone Methyltransferase, name is 1-(3-((((2R,3S,4R,5R)-5-(4-Amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)(isopropyl)amino)propyl)-3-(4-(tert-butyl)phenyl)urea, and the molecular formula is C10H16Br3N, Related Products of tetrahydrofurans.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Xuan, Maojie’s team published research in Chinese Chemical Letters in 31 | CAS: 57124-87-5

Chinese Chemical Letters published new progress about 57124-87-5. 57124-87-5 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Thiol, name is 2-Methyl-3-tetrahydrofuranthiol, and the molecular formula is C37H30ClIrOP2, Computed Properties of 57124-87-5.

Xuan, Maojie published the artcileC-S coupling with nitro group as leaving group via simple inorganic salt catalysis, Computed Properties of 57124-87-5, the publication is Chinese Chemical Letters (2020), 31(1), 84-90, database is CAplus.

An efficient and practical synthetic protocol to synthesize non-sym. aryl thioethers by nucleophilic aromatic substitution (SNAr) reaction of nitroarenes by thiols with potassium phosphate as the catalyst is described. Various moderate to strong electron-withdrawing functional groups were tolerated by the system to provided thioethers in a good to excellent yields. The present method allowed access to 3 drug examples in a short reaction time. Finally, mechanistic studies suggested that the reaction may form the classic Meisenheimer complex through a two-step addition-elimination mechanism.

Chinese Chemical Letters published new progress about 57124-87-5. 57124-87-5 belongs to tetrahydrofurans, auxiliary class Tetrahydrofuran,Thiol, name is 2-Methyl-3-tetrahydrofuranthiol, and the molecular formula is C37H30ClIrOP2, Computed Properties of 57124-87-5.

Referemce:
https://en.wikipedia.org/wiki/Tetrahydrofuran,
Tetrahydrofuran | (CH2)3CH2O – PubChem