Wang, Peiling et al. published their research in FASEB Journal in 2021 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Related Products of 24386-93-4

Loss of haspin suppresses cancer cell proliferation by interfering with cell cycle progression at multiple stages was written by Wang, Peiling;Hua, Xiangmei;Sun, Yang;Li, Hongyu;Bryner, Yuge Han;Hsung, Richard P.;Dai, Jun. And the article was included in FASEB Journal in 2021.Related Products of 24386-93-4 The following contents are mentioned in the article:

Our recent studies have shown that haspin, a protein kinase imperative for mitosis, is engaged in the interphase progression of HeLa and U2OS cancer cells. In this investigation, we employed the Fucci reporter system and time-lapse imaging to examine the impact of haspin gene silencing on cell cycle progressions at a single-cell level. We found that the loss of haspin induced multiple cell cycle defects. Specifically, the S/G2 duration was greatly prolonged by haspin gene depletion or inhibition in synchronous HeLa cells. Haspin gene depletion in asynchronous HeLa and U2OS cells led to a similarly protracted S/G2 phase, followed by mitotic cell death or postmitotic G1 arrest. In addition, haspin deficiency resulted in robust induction of the p21CIP1/WAF1 checkpoint protein, a target of the p53 activation. Also, co-depleting haspin with either p21 or p53 could rescue U2OS cells from postmitotic G1 arrest and partially restore their proliferation. These results substantiate the haspin′s capacity to regulate interphase and mitotic progression, offering a broader antiproliferative potential of haspin loss in cancer cells. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Related Products of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Related Products of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Toti, Kiran S. et al. published their research in Journal of Medicinal Chemistry in 2016 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Computed Properties of C11H13IN4O4

South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase was written by Toti, Kiran S.;Osborne, Danielle;Ciancetta, Antonella;Boison, Detlev;Jacobson, Kenneth A.. And the article was included in Journal of Medicinal Chemistry in 2016.Computed Properties of C11H13IN4O4 The following contents are mentioned in the article:

Adenosine kinase (AdK) inhibitors raise endogenous adenosine levels, particularly in disease states, and have potential for treatment of seizures, neurodegeneration, and inflammation. On the basis of the South (S) ribose conformation and mol. dynamics (MD) anal. of nucleoside inhibitors bound in AdK X-ray crystallog. structures, (S)- and North (N)-methanocarba (bicyclo[3.1.0]hexane) derivatives of known inhibitors were prepared and compared as human (h) AdK inhibitors. 5′-Hydroxy (I, MRS4202 (S); III, MRS4380 (N)) and 5′-deoxy II (MRS4203 (S)) analogs, containing 7- and N6-NH Ph groups in 7-deazaadenine, robustly inhibited AdK activity (IC50 ∼ 100 nM), while the 5′-hydroxy derivative 30 lacking the Ph substituents was weak. Docking in the hAdK X-ray structure and MD simulation suggested a mode of binding similar to 5′-deoxy-5-iodotubercidin and other known inhibitors. Thus, a structure-based design approach for further potency enhancement is possible. The potent AdK inhibitors in this study are ready to be further tested in animal models of epilepsy. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Computed Properties of C11H13IN4O4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Computed Properties of C11H13IN4O4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Edwards, Megan R. et al. published their research in ACS Infectious Diseases in 2020 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Application of 24386-93-4

Small Molecule Compounds That Inhibit Antioxidant Response Gene Expression in an Inducer-Dependent Manner was written by Edwards, Megan R.;Liu, Gai;De, Sampriti;Sourimant, Julien;Pietzsch, Colette;Johnson, Britney;Amarasinghe, Gaya K.;Leung, Daisy W.;Bukreyev, Alexander;Plemper, Richard K.;Aron, Zachary;Bowlin, Terry L.;Moir, Donald T.;Basler, Christopher F.. And the article was included in ACS Infectious Diseases in 2020.Application of 24386-93-4 The following contents are mentioned in the article:

Marburg virus (MARV) causes severe disease in humans and is known to activate nuclear factor erythroid 2-related factor 2 (Nrf2), the major transcription factor of the antioxidant response. Canonical activation of Nrf2 involves oxidative or electrophilic stress that prevents Kelch-like ECH-associated protein 1 (Keap1) targeted degradation of Nrf2, leading to Nrf2 stabilization and activation of the antioxidant response. MARV activation of Nrf2 is noncanonical with the MARV VP24 protein (mVP24) interacting with Keap1, freeing Nrf2 from degradation A high-throughput screening (HTS) assay was developed to identify inhibitors of mVP24-induced Nrf2 activity and used to screen more than 55,000 compounds Hit compounds were further screened against secondary HTS assays for the inhibition of antioxidant activity induced by addnl. canonical and noncanonical mechanisms. This pipeline identified 14 compounds that suppress the response, dependent on the inducer, with 50% inhibitory concentrations below 5μM and selectivity index values greater than 10. Notably, several of the identified compounds specifically inhibit mVP24-induced Nrf2 activity. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Application of 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Application of 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wu, Can-rong et al. published their research in Acta Pharmacologica Sinica | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Application of 2492423-29-5

Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19 was written by Wu, Can-rong;Yin, Wan-chao;Jiang, Yi;Xu, H. Eric. And the article was included in Acta Pharmacologica Sinica.Application of 2492423-29-5 The following contents are mentioned in the article:

A review. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and persistently threatens to humanity. With tireless efforts from scientists around the world, understanding of the biol. of coronavirus has been greatly enhanced over the past 2 years. Structural biol. has demonstrated its powerful impact on uncovering structures and functions for the vast majority of SARS-CoV-2 proteins and guided the development of drugs and vaccines against COVID-19. In this review, we summarize current progress in the structural biol. of SARS-CoV-2 and discuss important biol. issues that remain to be addressed. We present the examples of structure-based design of Pfizer′s novel anti-SARS-CoV-2 drug PF-07321332 (Paxlovid), Merck′s nucleotide inhibitor molnupiravir (Lagevrio), and VV116, an oral drug candidate for COVID-19. These examples highlight the importance of structure in drug discovery to combat COVID-19. We also discussed the recent variants of Omicron and its implication in immunity escape from existing vaccines and antibody therapies. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Application of 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Application of 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kabinger, Florian et al. published their research in Nature Structural & Molecular Biology in 2021 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Product Details of 2492423-29-5

Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis was written by Kabinger, Florian;Stiller, Carina;Schmitzova, Jana;Dienemann, Christian;Kokic, Goran;Hillen, Hauke S.;Hoebartner, Claudia;Cramer, Patrick. And the article was included in Nature Structural & Molecular Biology in 2021.Product Details of 2492423-29-5 The following contents are mentioned in the article:

Abstract: Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the mol. mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochem. assays show that the RdRp uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural anal. of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Product Details of 2492423-29-5).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofuran (THF), or oxolane, is mainly used as a precursor to polymers. Being polar and having a wide liquid range, THF is a versatile solvent. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Product Details of 2492423-29-5

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Ho, Wei Shen et al. published their research in Pharmacological Research in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Formula: C13H19N3O7

COVID-19 and the promise of small molecule therapeutics: Are there lessons to be learnt? was written by Ho, Wei Shen;Zhang, Ruirui;Tan, Yeong Lan;Chai, Christina Li Lin. And the article was included in Pharmacological Research in 2022.Formula: C13H19N3O7 The following contents are mentioned in the article:

A review. The coronavirus disease 2019 (COVID-19) pandemic had grounded the world to a standstill. As the disease continues to rage two years on, it is apparent that effective therapeutics are critical for a successful endemic living with COVID-19. A dearth in suitable antivirals has prompted researchers and healthcare professionals to investigate existing and developmental drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some of these drugs initially appeared to be promising for the treatment of COVID-19, they were ultimately found to be ineffective. In this review, we provide a retrospective anal. on the merits and limitations of some of these drugs that were tested against SARS-CoV-2 as well as those used for adjuvant therapy. While many of these drugs are no longer part of our arsenal for the treatment of COVID-19, important lessons can be learnt. The recent inclusion of molnupiravir and Paxlovid as treatment options for COVID-19 represent our best hope to date for endemic living with COVID-19. Our viewpoints on these two drugs and their prospects as current and future antiviral agents will also be provided. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Formula: C13H19N3O7).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is a stable compound with relatively low boiling point and excellent solvency. Tetrahydrofuran (THF) is primarily used as a precursor to polymers including for surface coating, adhesives, and printing inks.Formula: C13H19N3O7

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Tokarz, Piotr et al. published their research in Protein Science in 2018 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Category: tetrahydrofurans

Crystal structure of ADP-dependent glucokinase from Methanocaldococcus jannaschii in complex with 5-iodotubercidin reveals phosphoryl transfer mechanism was written by Tokarz, Piotr;Wisniewska, Magdalena;Kaminski, Marcin M.;Dubin, Grzegorz;Grudnik, Przemyslaw. And the article was included in Protein Science in 2018.Category: tetrahydrofurans The following contents are mentioned in the article:

ADP-dependent glucokinase (ADPGK) is an alternative novel glucose phosphorylating enzyme in a modified glycolysis pathway of hyperthermophilic Archaea. In contrast to classical ATP-dependent hexokinases, ADPGK utilizes ADP as a phosphoryl group donor. Here, we present a crystal structure of archaeal ADPGK from Methanocaldococcus jannaschii in complex with an inhibitor, 5-iodotubercidin, D-glucose, inorganic phosphate, and a magnesium ion. Detailed anal. of the architecture of the active site allowed for confirmation of the previously proposed phosphorylation mechanism and the crucial role of the invariant arginine residue (Arg197). The crystal structure shows how the phosphate ion, while mimicking a β-phosphate group, is positioned in the proximity of the glucose moiety by arginine and the magnesium ion, thus providing novel insights into the mechanism of catalysis. In addition, we demonstrate that 5-iodotubercidin inhibits human ADPGK-dependent T cell activation-induced reactive oxygen species (ROS) release and downstream gene expression, and as such it may serve as a model compound for further screening for hADPGK-specific inhibitors. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Category: tetrahydrofurans).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. THF (Tetrahydrofuran) is also used as a starting material for the synthesis of poly(tetramethylene ether) glycol (PTMG), etc.Category: tetrahydrofurans

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Milisavljevic, Nemanja et al. published their research in Organic & Biomolecular Chemistry in 2018 | CAS: 24386-93-4

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: 24386-93-4

Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates was written by Milisavljevic, Nemanja;Perlikova, Pavla;Pohl, Radek;Hocek, Michal. And the article was included in Organic & Biomolecular Chemistry in 2018.Recommanded Product: 24386-93-4 The following contents are mentioned in the article:

We synthesized a small library of 18 5-substituted pyrimidine or 7-substituted 7-deazapurine nucleoside triphosphates bearing Me, ethynyl, Ph, benzofuryl or dibenzofuryl groups through cross-coupling reactions of nucleosides followed by triphosphorylation or through direct cross-coupling reactions of halogenated nucleoside triphosphates. We systematically studied the influence of the modification on the efficiency of phage T7 RNA polymerase-catalyzed synthesis of modified RNA and found that modified ATP, UTP, and CTP analogs bearing smaller modifications were good substrates and building blocks for RNA synthesis even in difficult sequences incorporating multiple modified nucleotides. Bulky dibenzofuryl derivatives of ATPand GTP were not substrates for the RNA polymerase. In the case of modified GTP analogs, a modified procedure using a special promoter and GMP as initiator needed to be used to obtain efficient RNA synthesis. The T7 RNA polymerase synthesis of modified RNA can be very efficiently used for synthesis of modified RNA but the method has constraints in the sequence of the 1st 3 nucleotides of the transcript, which must contain a non-modified G in the +1 position. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4Recommanded Product: 24386-93-4).

(2R,3R,4S,5R)-2-(4-Amino-5-iodo-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)tetrahydrofuran-3,4-diol (cas: 24386-93-4) belongs to tetrahydrofuran derivatives.Tetrahydrofuran has many industry uses as a solvent including in natural and synthetic resins, high polymers, fat oils, rubber, polymer. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Recommanded Product: 24386-93-4

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Rahmah, Laila et al. published their research in Pharmacological Reports | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Quality Control of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Oral antiviral treatments for COVID-19: opportunities and challenges was written by Rahmah, Laila;Abarikwu, Sunny O.;Arero, Amanuel Godana;Jibril, Aliyu Tijani;Fal, Andrzej;Flisiak, Robert;Makuku, Rangarirai;Marquez, Leander;Mohamed, Kawthar;Ndow, Lamin;Zarebska-Michaluk, Dorota;Rezaei, Nima;Rzymski, Piotr. And the article was included in Pharmacological Reports.Quality Control of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate The following contents are mentioned in the article:

A review. The use of antiviral COVID-19 medications can successfully inhibit SARS-CoV-2 replication and prevent disease progression to a more severe form. However, the timing of antiviral treatment plays a crucial role in this regard. Oral antiviral drugs provide an opportunity to manage SARS-CoV-2 infection without a need for hospital admission, easing the general burden that COVID-19 can have on the healthcare system. This review paper i. presents the potential pharmaceutical antiviral targets, including various host-based targets and viral-based targets, ii. characterizes the first-generation anti-SARS-CoV-2 oral drugs (nirmatrelvir/ritonavir and molnupiravir), iii. summarizes the clin. progress of other oral antivirals for use in COVID-19, iv. discusses ethical issues in such clin. trials and (v) presents challenges associated with the use of oral antivirals in clin. practice. Oral COVID-19 antivirals represent a part of the strategy to adapt to long-term co-existence with SARS-CoV-2 in a manner that prevents healthcare from being overwhelmed. It is pivotal to ensure equal and fair global access to the currently available oral antivirals and those authorized in the future. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Quality Control of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. THF (Tetrahydrofuran) is water-miscible and has a low viscosity making it a highly versatile solvent used in a variety of industries. Tetrahydrofuran reaction with hydrogen sulfide: In the presence of a solid acid catalyst, tetrahydrofuran reacts with hydrogen sulfide to give tetrahydrothiophene.Quality Control of ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Anonymous et al. published their research in Nature (London, United Kingdom) in 2022 | CAS: 2492423-29-5

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Name: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Microbial enzyme helps to churn out scarce COVID drug at full tilt was written by Anonymous. And the article was included in Nature (London, United Kingdom) in 2022.Name: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate The following contents are mentioned in the article:

An engineered bacterial enzyme turbocharges the manufacture of the antiviral molnupiravir, one of the few approved drugs that can prevent severe COVID-19. Current methods for making the drug require multiple steps and yield relatively low amounts A more efficient route involves a precursor mol. called N-hydroxycytidine: just one chem. reaction converts it to molnupiravir. Anthony Green at the University of Manchester, UK, and his colleagues observed that, under certain conditions, an enzyme from the bacterium Escherichia coli could make small amounts of the precursor from the biomol. cytidine (J. Am. Chem. Soc. 144, 3761-3765 (2022)). The team mutated the DNA encoding the enzyme, improving the enzyme’s efficiency, and used E. coli cells to make the upgraded enzyme. Finally, the researchers optimized the synthetic process by lowering the reaction’s temperature That prompted N-hydroxycytidine to crystallize in high purity from solution as soon as it formed. In a scaled-up demonstration, the authors prepared 137 g of N-hydroxycytidine, converting 71% of reactants to the precursor mol. in under 3 h. During that time, each enzyme mol. facilitated more than 85,000 chem. transformations. This study involved multiple reactions and reactants, such as ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5Name: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate).

((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate (cas: 2492423-29-5) belongs to tetrahydrofuran derivatives. Tetrahydrofurans and furans are important oxygen-containing heterocycles that often exhibit interesting properties for biological applications or applications in the cosmetic industry. It is more basic than diethyl ether and forms stronger complexes with Li+, Mg2+, and boranes. It is a popular solvent for hydroboration reactions and for organometallic compounds such as organolithium and Grignard reagents.Name: ((2R,3S,4R,5R)-3,4-Dihydroxy-5-((Z)-4-(hydroxyimino)-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)tetrahydrofuran-2-yl)methyl isobutyrate

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem