Shao, Yuewen’s team published research in ACS Sustainable Chemistry & Engineering in 2020-04-06 | 97-99-4

ACS Sustainable Chemistry & Engineering published new progress about Biomass. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Related Products of 97-99-4.

Shao, Yuewen; Wang, Junzhe; Du, Huining; Sun, Kai; Zhang, Zhanming; Zhang, Lijun; Li, Qingyin; Zhang, Shu; Liu, Qing; Hu, Xun published the artcile< Importance of Magnesium in Cu-Based Catalysts for Selective Conversion of Biomass-Derived Furan Compounds to Diols>, Related Products of 97-99-4, the main research area is magnesium copper catalyst biomass furan diol.

Selectively hydrogenating the carbonyl of furfural and opening of the furan ring is challenging but crucial for efficient conversion of furfural to pentanediols, the valuable chems. In this study, CuMgAl catalysts with highly dispersed Cu particles and tunable basic sites were synthesized with layered double hydroxides as precursors for hydrogenation of furfural to furfuryl alc. (FA) and the subsequent hydrogenolysis of FA to 1,2-pentanediol and 1,5-pentanediol. The presence of varied content of Mg in the catalyst promoted dispersion of copper oxide and exposure of metallic copper species, weakened interaction between copper oxides and the carrier, suppressed sintering of metallic copper species, and increased abundance of the basic sites, promoting the catalytic activity/selectivity/stability. Strong chem. adsorption of the furan ring in FA on basic sites of the catalyst suppressed hydrogenation of the furan ring and facilitated opening of the furan ring in FA, the rate-determining step for formation of the diols. High yields of 1,2-pentanediol and 1,5-pentanediol are achieved over the copper-based catalyst via the hydrogenolysis of furfuryl alc.

ACS Sustainable Chemistry & Engineering published new progress about Biomass. 97-99-4 belongs to class tetrahydrofurans, and the molecular formula is C5H10O2, Related Products of 97-99-4.

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Torres-Pacheco, Luis J.’s team published research in Electrochimica Acta in 2020 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Name: 3-Hydroxydihydrofuran-2(3H)-one

Name: 3-Hydroxydihydrofuran-2(3H)-oneOn September 1, 2020 ,《Sorbitol electro-oxidation reaction on sub<10 nm PtAu bimetallic nanoparticles》 was published in Electrochimica Acta. The article was written by Torres-Pacheco, Luis J.; De Leon-Rodriguez, Antonio; Alvarez-Contreras, Lorena; Guerra-Balcazar, Minerva; Arjona, Noe. The article contains the following contents: Sorbitol is a highly available and functionalized polyalc., with vast industrial usages and with great potential for fuel cells application. However, few studies were done regarding its electrochem. oxidation Monometallic Au, Pt and PtAu with different compositions from Pt-rich (such as Pt85Au15) to Au-rich (Pt10Au90) nanomaterials were synthesized. Several parameters like sorbitol and KOH concentration, scan rate, charge-transfer resistance, and temperature were tested. According with the physicochem. characterization, average particle sizes from 5.6 to 6.5 nm were found for all electrocatalysts, while Pt at. percentages of 85, 60, 40, and 10% were obtained. XPS revealed shifts in Pt 4f and Au 4f core-levels related to electron d. changes by the interaction between these elements and as a result, the electrocatalytic properties for the sorbitol electrooxidation reaction (SOR) were modified. The PtAu nanomaterials presented an increase of the c.d. with the raise of the KOH and sorbitol concentrations, being Pt40Au60/C the most active electrocatalyst displaying 40 mA mg-1 at 0.1M sorbitol in 2 M KOH with an onset potential of -0.50 V vs. normal H electrode. This onset potential value was more neg. to that typically reported for other polyols like glycerol and ethylene glycol. The reaction pathway of Pt/C, Au/C and Pt40Au60/C was followed by chromatog. and spectroscopic techniques, finding that the complex surfaces of these electrocatalysts were capable to carry the SOR via several electrons (from 2 to 24 e-). In this manner, the high electrocatalytic activity of Pt40Au60/C was attributed to the electron d. changes that promote a higher electron transfer forming shorter-chain byproducts. In the part of experimental materials, we found many familiar compounds, such as 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Name: 3-Hydroxydihydrofuran-2(3H)-one)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Name: 3-Hydroxydihydrofuran-2(3H)-one

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wang, Xing’s team published research in Analyst (Cambridge, United Kingdom) in 2020 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.HPLC of Formula: 696-59-3

HPLC of Formula: 696-59-3In 2020 ,《A pro-gastrin-releasing peptide imprinted photoelectrochemical sensor based on the in situ growth of gold nanoparticles on a MoS2 nanosheet surface》 appeared in Analyst (Cambridge, United Kingdom). The author of the article were Wang, Xing; Deng, Hongping; Wang, Chen; Wei, Qiuxi; Wang, Yanying; Xiong, Xiaoxing; Li, Chunya; Li, Wenwen. The article conveys some information:

Lamellar MoS2 nanosheets were successfully prepared by hydrothermal synthesis using 1-(3-mercaptopropyl)-3-methyl-imidazolium bromine (MIMBr) ionic liquid as a sulfur source and a morphol. control agent, and sodium molybdate as a molybdenum source. Gold nanoparticles were assembled on the surface of MoS2 nanosheets by the in situ reduction of chloroauric acid at low temperatures to successfully fabricate AuNP/2D-MoS2 nanocomposites, thus improving photoelectrochem. response. AuNP/2D-MoS2 nanocomposites were used as photoelec. active materials modified onto a glassy carbon electrode surface to construct a photoelectrochem. (PEC) sensor. Then, using 1-(N-pyrrolpropyl)-3-methyl-imidazolium bromine (PMIMBr) ionic liquid as a functional monomer and pro-gastrin-releasing peptide (Pro-GRP) as a template, a molecularly imprinted polymerized ionic liquid film was electrochem. deposited on an AuNP/2D-MoS2/GCE surface. Upon removing the templates, a molecularly imprinted photoelectrochem. sensor was constructed for the sensing of a tumor marker, pro-gastrin-releasing peptide. Exptl. conditions including ascorbic acid concentration, polymerization conditions, incubation time, and pH value of the incubation solution have been optimized. Under the optimized conditions, the molecularly imprinted photoelectrochem. sensor can specifically detect the target protein Pro-GRP in the range of 0.02 ng mL-1-5 ng mL-1 with a detection limit of 0.0032 ng mL-1 (S/N = 3). The practicability of this photoelectrochem. sensor was demonstrated by accurately determining Pro-GRP in human serum samples. In addition to this study using 2,5-Dimethoxytetrahydrofuran, there are many other studies that have used 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3HPLC of Formula: 696-59-3) was used in this study.

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.HPLC of Formula: 696-59-3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Qingyin’s team published research in Science of the Total Environment in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Application of 19444-84-9

Application of 19444-84-9On September 10, 2021 ,《Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics》 was published in Science of the Total Environment. The article was written by Li, Qingyin; Zhang, Shu; Gholizadeh, Mortaza; Hu, Xun; Yuan, Xiangzhou; Sarkar, Binoy; Vithanage, Meththika; Masek, Ondrej; Ok, Yong Sik. The article contains the following contents:

Swine and chicken manures are abundant solid wastes that can be converted into carbonaceous materials through hydrothermal carbonization (HTC). Owing to their unique biochem. compositions, co-HTC of these two types of manures may have significant implications for the generated products. We investigated the co-HTC of swine manure and chicken manure to understand the influence of the interaction between contrasting manures on the properties of the derived products. The results indicated that co-HTC treatment enhanced the formation of solid product and improved the C and N contents, heating value, and energy yield of the resulting hydrochar. Regarding the ignition temperature and comprehensive combustion index, the combustion properties of the hydrochar were enhanced owing to the mutual effect of the HTC intermediates. Addnl., the interaction of the intermediates significantly impacted the transfer of nitrogenous species and generation of organic acids and organic polymers with fused-ring structures. Therefore, co-HTC processing of animal manures could potentially provide a sustainable pathway for the conversion of animal waste into solid products with improved characteristics compared to those produced by treating the two feedstocks sep. After reading the article, we found that the author used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Application of 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis. It may be employed as starting reagent in the synthesis of enantiomerically pure orthogonally protected δ-azaproline, via Mitsunobu reaction.Application of 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Li, Qingyin’s team published research in Science of the Total Environment in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 19444-84-9

Recommanded Product: 19444-84-9On October 15, 2021 ,《Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products》 was published in Science of the Total Environment. The article was written by Li, Qingyin; Lin, Haisheng; Zhang, Shu; Yuan, Xiangzhou; Gholizadeh, Mortaza; Wang, Yi; Xiang, Jun; Hu, Song; Hu, Xun. The article contains the following contents:

Co-hydrothermal carbonization (HTC) of livestock manure and biomass might improve the fuel properties of the hydrochar due to the high reactivity of the biomass-derived intermediates with the abundant oxygen-containing functionalities. However, the complicated compositions make it difficult to explicit the specific roles of the individual components of biomass played in the co-HTC process. In this study, cellulose was used for co-HTC with swine manure to investigate the influence on the properties of the hydrochar. The yield of hydrochar obtained from co-HTC reduced gradually with the cellulose proportion increased, and the solid yield was lower than the theor. value. This was because the cellulose-derived intermediates favored the stability of the fragments from hydrolysis of swine manure. The increased temperature resulted in the reduction of the hydrochar yield whereas the prolonged time enhanced the formation of solid product. The interaction of the co-HTC intermediates facilitated the formation of O-containing species, thus making the solid more oxygen- and hydrogen-rich with a higher volatility. In addition, the co-HTC affected the evolution of functionalities like -OH and C=O during the thermal treatment of the hydrochar and altered its morphol. by stuffing the pores from swine manure-derived solid with the microspheres from HTC of cellulose. The interaction of the varied intermediates also impacted the formation of amines, ketones, carboxylic acids, esters, aromatics and the polymeric products in distinct ways. The experimental process involved the reaction of 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Recommanded Product: 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Recommanded Product: 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kawamata, Yuki’s team published research in Industrial Crops and Products in 2021 | CAS: 19444-84-9

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Application of 19444-84-9

Kawamata, Yuki; Yoshikawa, Takuya; Koyama, Yoshihito; Ishimaru, Hiroya; Ohtsuki, Satoru; Fumoto, Eri; Sato, Shinya; Nakasaka, Yuta; Masuda, Takao published an article on January 31 ,2021. The article was titled 《Uniqueness of biphasic organosolv treatment of soft- and hardwood using water/1-butanol co-solvent》, and you may find the article in Industrial Crops and Products.Application of 19444-84-9 The information in the text is summarized as follows:

Biphasic organosolv treatment for soft- and hardwood using water/1-butanol was unique based on the correlation between liquid-phase states and solubility of the co-solvents when compared with a monophasic water/ethanol system. First, Pro II process simulator showed that water/1-butanol exhibited a biphasic system in the range of 1.6-19.0 mol/mol at a treatment temperature of 473 K. In addition, solubility of the co-solvents was evaluated using the Hildebrand solubility parameter (δ), which indicated that the biphasic system could simultaneously provide 28.5 and 42.0 MPa1/2 for the 1-butanol and water phase, resp. Each δ value appeared appropriate for lignin and hemicellulose dissolution because they were similar to those reported for lignin and a typical sugar. While hemicellulose could be removed by increasing water content in an organosolv of Japanese cedar sawdust, high lignin removal was achieved only under biphasic conditions. Carbon yield of each fraction (solid, 1-butanol-, and water-soluble fraction) and Py-GC/MS anal. revealed that lignin and hemicellulose could be recovered in the 1-butanol and water fractions, resp. The organosolv using Japanese cedar and willow was compared to the results when using monophasic water/ethanol. The results indicated that the co-solvent could not efficiently remove hemicellulose and lignin simultaneously because the monophasic system did not produce the level of solubility needed under the same conditions. In contrast, the biphasic water/1-butanol system achieved greater removal of hemicellulose and lignin compared to water/ethanol. The biphasic system was also applicable to separation of an industrial agricultural waste; sugarcane bagasse. Finally, the 2D-NMR spectra of 1-butanol-soluble lignin showed a trace amount of β-O-4 linkages in the lignin, indicating β-O-4 was cleaved via hydrolysis in the water phase during biphasic treatment. After reading the article, we found that the author used 3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9Application of 19444-84-9)

3-Hydroxydihydrofuran-2(3H)-one(cas: 19444-84-9) is a 5-membered cyclic ester. It was obtained via tin-conversion of biomass-derived 1,3-dihydroxyacetone (DHA) and formaldehyde. And it may be employed as starting reagent in the synthesis of series of seco-pseudonucleoside synthons via aminolysis.Application of 19444-84-9

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Xin, Xing’s team published research in European Food Research and Technology in 2022 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Synthetic Route of C6H12O3

In 2022,Xin, Xing; Zhao, Wenyu; Essien, Sinemobong; Dell, Kiri; Baroutian, Saeid published an article in European Food Research and Technology. The title of the article was 《The effects of ageing treatment on bioactive contents and chemical composition of liquid smoke food flavourings》.Synthetic Route of C6H12O3 The author mentioned the following in the article:

Liquid smoke food flavouring is an alternative to traditional food smoking. Ageing treatment of liquid smoke can remove tar to improve a consistent sensory experience but traditionally takes months by storage. This study proposed a thermal treatment approach to accelerate the ageing process. Liquid smoke samples from kanuka and hickory woodchips were prepared by fast pyrolysis. The obtained liquid smoke samples were subjected to ageing by storing them at ambient temperature for 18 mo. Accelerated ageing of liquid smoke was carried out by heat treatment at 80°C for 24 and 48 h. Tar formed during the ageing process, with a yield ranging from 2.2 to 4.1 weight%. Both ageing treatments resulted in decreases in bioactive content and their activities in terms of total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power assay (FRAP) and 2,2-diphenyl-1-picrylhydrazyl scavenging activity (DPPH). Chem. composition and principal component analyses indicated that liquid smoke chem. compositions were influenced by wood type and ageing conditions. It was found that thermal treatment at 80°C for 24 h was sufficient to age liquid smoke. In the experiment, the researchers used many compounds, for example, 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Synthetic Route of C6H12O3)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Synthetic Route of C6H12O3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Kielesinski, Lukasz’s team published research in Journal of Organic Chemistry in 2021 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Quality Control of 2,5-Dimethoxytetrahydrofuran

Kielesinski, Lukasz; Morawski, Olaf W.; Barboza, Cristina A.; Gryko, Daniel T. published an article in 2021. The article was titled 《Polarized Helical Coumarins: [1,5] Sigmatropic Rearrangement and Excited-State Intramolecular Proton Transfer》, and you may find the article in Journal of Organic Chemistry.Quality Control of 2,5-Dimethoxytetrahydrofuran The information in the text is summarized as follows:

The tandem process of phenol addition to a cyclic α,β-unsaturated ester followed by intramol. transesterification and [1,5] sigmatropic rearrangement affords a series of helical coumarins based upon a previously unknown 3-amino-7-hydroxybenzo[3,4]cyclohepta[1,2-c]chromen-6-one core. These novel polarized coumarins, possessing a β-ketoester moiety, have been employed to synthesize more rigid and helical coumarin-pyrazolones, which display green fluorescence. The enhanced emission of coumarin-pyrazolones in polar solvents depends on the nature of the S1 state. The coumarin-pyrazolones are predicted to have two vertical states close in energy: a weakly absorbing S1 (1LE) followed by a bright S2 state (1CT). In polar solvents, the 1CT can be stabilized below the 1LE and may become the fluorescent state. Solvatochromism of the fluorescence spectra confirms this theor. prediction. The presence of an N-H···O=C intramol. hydrogen bond in these coumarin-pyrazolone hybrids facilitates excited-state intramol. proton transfer (ESIPT). This process leads to a barrierless conical intersection with the ground electronic state and opens a radiationless deactivation channel effectively competing with fluorescence. Solvent stabilization of the CT state increases the barrier for ESIPT and decreases the efficiency of the nonradiative channel. This results in the observed correlation between solvatochromism and an increase of fluorescence intensity in polar solvents. In addition to this study using 2,5-Dimethoxytetrahydrofuran, there are many other studies that have used 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Quality Control of 2,5-Dimethoxytetrahydrofuran) was used in this study.

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. Friedel Crafts reaction, for example, adds an alkyl or acyl group to aromatic ethers when they react with an alkyl or acyl halide in the presence of a Lewis acid as a catalyst.Quality Control of 2,5-Dimethoxytetrahydrofuran

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Joshi, Shrinivas D.’s team published research in Medicinal Chemistry Research in 2019 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Recommanded Product: 2,5-Dimethoxytetrahydrofuran

Recommanded Product: 2,5-DimethoxytetrahydrofuranIn 2019 ,《Chemical synthesis, molecular modeling and pharmacophore mapping of new pyrrole derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth》 appeared in Medicinal Chemistry Research. The author of the article were Joshi, Shrinivas D.; Kumar, S. R. Prem; Patil, Sonali; Vijayakumar, M.; Kulkarni, Venkatarao H.; Nadagouda, Mallikarjuna N.; Badiger, Aravind M.; Lherbet, Christian; Aminabhavi, Tejraj M.. The article conveys some information:

Abstract: Substituted phenylthiazolyl benzamide and pyrrolyl benzamide derivatives were developed using mol. hybridization technique to create novel lead antimycobacterial mols. used to fight against Mycobacteriumtuberculosis. The newly synthesized mols. have inhibited InhA, the enoyl-ACP reductase enzyme from the mycobacterial type II fatty acid biosynthetic pathway. Of these, compound 3b showed H-bonding interactions with Tyr158 and co-factor NAD+ that binds the active site of InhA. All the mols. were screened for in vitro antitubercular activity against M. tuberculosis H37Rv, as well as some representative mols. as the inhibitors of InhA. Thirteen compounds exhibited good anti-TB activities (MIC = 1.6μg/mL), but only few representative mols. showed the moderate InhA enzyme inhibition activity. [Figure not available: see fulltext.]. In addition to this study using 2,5-Dimethoxytetrahydrofuran, there are many other studies that have used 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Recommanded Product: 2,5-Dimethoxytetrahydrofuran) was used in this study.

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Recommanded Product: 2,5-Dimethoxytetrahydrofuran

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem

Wani, Rucha R.’s team published research in Journal of Heterocyclic Chemistry in 2019 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Reference of 2,5-Dimethoxytetrahydrofuran

Reference of 2,5-DimethoxytetrahydrofuranIn 2019 ,《Solvent Free Synthesis of N-Substituted Pyrroles Catalyzed by Calcium Nitrate》 appeared in Journal of Heterocyclic Chemistry. The author of the article were Wani, Rucha R.; Chaudhari, Hemchandra K.; Takale, Balaram S.. The article conveys some information:

Moderated and mild way for synthesizing N-substituted pyrroles I (R = 4-bromophenyl, naphth-1-yl, 2-chloropyridin-4-yl, etc.) has been demonstrated. No solvents need to be used for this reaction, and instead, reactants themselves acted as a reaction medium. In fact, the reaction is carried out using catalytic amount of Ca(NO3)2.4H2O. The reaction conditions are selective and mild that helped to tolerate a wide variety of functional groups to give the desired products I in good chem. yields. After reading the article, we found that the author used 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Reference of 2,5-Dimethoxytetrahydrofuran)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Reference of 2,5-Dimethoxytetrahydrofuran

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem