Guan, Wen’s team published research in ChemSusChem in 2022 | CAS: 696-59-3

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Recommanded Product: 696-59-3

Guan, Wen; Zhang, Yunlei; Yan, Changhao; Chen, Yao; Wei, Yanan; Cao, Yu; Wang, Fang; Huo, Pengwei published an article in 2022. The article was titled 《Base-Free Aerobic Oxidation of Furfuralcohols and Furfurals to Furancarboxylic Acids over Nitrogen-Doped Carbon-Supported AuPd Bowl-Like Catalyst》, and you may find the article in ChemSusChem.Recommanded Product: 696-59-3 The information in the text is summarized as follows:

Upgrading furfuralcs. and furfurals to furancarboxylic acids is of great significance for high value-added downstream chems. synthesis and biomass conversion. Developing an efficient catalyst is the key to acquiring a completely sustainable process. Herein, nitrogen-doped carbon-supported bimetallic AuPd bowl-like catalysts were synthesized. The surface wettability of nitrogen-doped carbon was well adjusted by the nitrification process. Benefiting from the alloying effect of bimetallic AuPd catalyst and the formation of hydroxyl radical initiated by H2O dissociation on the hydrophilic surface of nitrated nitrogen-doped carbon, base-free aerobic oxidation of 5-hydroxymethylfurfural (HMF) could produce the highest 2,5-furandicarboxylic acid (FDCA) yield of 93.9%. In-situ IR spectroscopy uncovered adsorption configuration of HMF, and the nitrated carbon surface was favorable for HMF and intermediates to enter the active sites, greatly promoting the catalytic oxidation process. Employing other furfuralcs. (furfuryl alc., furan-2,5-diyldimethanol, 2,5-bishydroxymethylfuran) as well as furfural and 5-methylfurfural as starting materials, 35.6-95.4% yield of furancarboxylic acids (FDCA, 2-furoic acid, 5-methyl-2-furoic acid) were also obtained. Moreover, the developed catalysts could maintain excellent stability and activity after four successive runs. This deep insight into the role of bimetallic synergy and surface wettability provides a basis for the rational design of the highly efficient catalysts for the oxidation of furfuralcs. and furfurals and related reactions. In the experimental materials used by the author, we found 2,5-Dimethoxytetrahydrofuran(cas: 696-59-3Recommanded Product: 696-59-3)

2,5-Dimethoxytetrahydrofuran(cas: 696-59-3) is a member of ether. When aromatic ethers are exposed to halogen in the presence or absence of a catalyst, they undergo halogenation, such as bromination.Recommanded Product: 696-59-3

Referemce:
Tetrahydrofuran – Wikipedia,
Tetrahydrofuran | (CH2)3CH2O – PubChem